当前位置: 首页>>代码示例>>Python>>正文


Python Lap.Intensity方法代码示例

本文整理汇总了Python中tapiriik.services.interchange.Lap.Intensity方法的典型用法代码示例。如果您正苦于以下问题:Python Lap.Intensity方法的具体用法?Python Lap.Intensity怎么用?Python Lap.Intensity使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tapiriik.services.interchange.Lap的用法示例。


在下文中一共展示了Lap.Intensity方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _downloadActivity

# 需要导入模块: from tapiriik.services.interchange import Lap [as 别名]
# 或者: from tapiriik.services.interchange.Lap import Intensity [as 别名]
    def _downloadActivity(self, serviceRecord, activity, returnFirstLocation=False):
        activityURI = activity.ServiceData["ActivityURI"]
        headers = self._getAuthHeaders(serviceRecord)
        activityData = requests.get(activityURI, headers=headers)
        activityData = activityData.json()

        if "clock_duration" in activityData:
            activity.EndTime = activity.StartTime + timedelta(seconds=float(activityData["clock_duration"]))

        activity.Private = "sharing" in activityData and activityData["sharing"] != "public"

        activity.GPS = False # Gets set back if there is GPS data

        if "notes" in activityData:
            activity.Notes = activityData["notes"]

        activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=float(activityData["calories"]))

        activity.Stats.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(activityData["elevation_gain"]) if "elevation_gain" in activityData else None, loss=float(activityData["elevation_loss"]) if "elevation_loss" in activityData else None)

        activity.Stats.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=activityData["avg_heartrate"] if "avg_heartrate" in activityData else None, max=activityData["max_heartrate"] if "max_heartrate" in activityData else None)
        activity.Stats.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=activityData["avg_cadence"] if "avg_cadence" in activityData else None, max=activityData["max_cadence"] if "max_cadence" in activityData else None)
        activity.Stats.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=activityData["avg_power"] if "avg_power" in activityData else None, max=activityData["max_power"] if "max_power" in activityData else None)

        laps_info = []
        laps_starts = []
        if "laps" in activityData:
            laps_info = activityData["laps"]
            for lap in activityData["laps"]:
                laps_starts.append(dateutil.parser.parse(lap["start_time"]))
        lap = None
        for lapinfo in laps_info:
            lap = Lap()
            activity.Laps.append(lap)
            lap.StartTime = dateutil.parser.parse(lapinfo["start_time"])
            lap.EndTime = lap.StartTime + timedelta(seconds=lapinfo["clock_duration"])
            if "type" in lapinfo:
                lap.Intensity = LapIntensity.Active if lapinfo["type"] == "ACTIVE" else LapIntensity.Rest
            if "distance" in lapinfo:
                lap.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(lapinfo["distance"]))
            if "duration" in lapinfo:
                lap.Stats.TimerTime = ActivityStatistic(ActivityStatisticUnit.Seconds, value=lapinfo["duration"])
            if "calories" in lapinfo:
                lap.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=lapinfo["calories"])
            if "elevation_gain" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(lapinfo["elevation_gain"])))
            if "elevation_loss" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, loss=float(lapinfo["elevation_loss"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "avg_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, avg=float(lapinfo["avg_speed"])))
            if "max_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, max=float(lapinfo["max_heartrate"])))
            if "avg_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(lapinfo["avg_heartrate"])))
        if lap is None: # No explicit laps => make one that encompasses the entire activity
            lap = Lap()
            activity.Laps.append(lap)
            lap.Stats = activity.Stats
            lap.StartTime = activity.StartTime
            lap.EndTime = activity.EndTime
        elif len(activity.Laps) == 1:
            activity.Stats.update(activity.Laps[0].Stats) # Lap stats have a bit more info generally.
            activity.Laps[0].Stats = activity.Stats

        timerStops = []
        if "timer_stops" in activityData:
            for stop in activityData["timer_stops"]:
                timerStops.append([dateutil.parser.parse(stop[0]), dateutil.parser.parse(stop[1])])

        def isInTimerStop(timestamp):
            for stop in timerStops:
                if timestamp >= stop[0] and timestamp < stop[1]:
                    return True
                if timestamp >= stop[1]:
                    return False
            return False

        # Collate the individual streams into our waypoints.
        # Global sample rate is variable - will pick the next nearest stream datapoint.
        # Resampling happens on a lookbehind basis - new values will only appear their timestamp has been reached/passed

        wasInPause = False
        currentLapIdx = 0
        lap = activity.Laps[currentLapIdx]

        streams = []
        for stream in ["location", "elevation", "heartrate", "power", "cadence", "distance"]:
            if stream in activityData:
                streams.append(stream)
        stream_indices = dict([(stream, -1) for stream in streams]) # -1 meaning the stream has yet to start
        stream_lengths = dict([(stream, len(activityData[stream])/2) for stream in streams])
        # Data comes as "stream":[timestamp,value,timestamp,value,...]
        stream_values = {}
        for stream in streams:
            values = []
            for x in range(0,int(len(activityData[stream])/2)):
#.........这里部分代码省略.........
开发者ID:7e7,项目名称:tapiriik,代码行数:103,代码来源:sporttracks.py

示例2: _downloadActivity

# 需要导入模块: from tapiriik.services.interchange import Lap [as 别名]
# 或者: from tapiriik.services.interchange.Lap import Intensity [as 别名]
    def _downloadActivity(self, serviceRecord, activity, returnFirstLocation=False):
        activityURI = activity.ServiceData["ActivityURI"]
        cookies = self._get_cookies(record=serviceRecord)
        activityData = requests.get(activityURI, cookies=cookies)
        activityData = activityData.json()

        if "clock_duration" in activityData:
            activity.EndTime = activity.StartTime + timedelta(seconds=float(activityData["clock_duration"]))

        activity.Private = "sharing" in activityData and activityData["sharing"] != "public"

        if "notes" in activityData:
            activity.Notes = activityData["notes"]

        activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=float(activityData["calories"]))

        activity.Stats.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(activityData["elevation_gain"]) if "elevation_gain" in activityData else None, loss=float(activityData["elevation_loss"]) if "elevation_loss" in activityData else None)

        activity.Stats.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=activityData["avg_heartrate"] if "avg_heartrate" in activityData else None, max=activityData["max_heartrate"] if "max_heartrate" in activityData else None)
        activity.Stats.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=activityData["avg_cadence"] if "avg_cadence" in activityData else None, max=activityData["max_cadence"] if "max_cadence" in activityData else None)
        activity.Stats.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=activityData["avg_power"] if "avg_power" in activityData else None, max=activityData["max_power"] if "max_power" in activityData else None)

        laps_info = []
        laps_starts = []
        if "laps" in activityData:
            laps_info = activityData["laps"]
            for lap in activityData["laps"]:
                laps_starts.append(dateutil.parser.parse(lap["start_time"]))
        lap = None
        for lapinfo in laps_info:
            lap = Lap()
            activity.Laps.append(lap)
            lap.StartTime = dateutil.parser.parse(lapinfo["start_time"])
            lap.EndTime = lap.StartTime + timedelta(seconds=lapinfo["clock_duration"])
            if "type" in lapinfo:
                lap.Intensity = LapIntensity.Active if lapinfo["type"] == "ACTIVE" else LapIntensity.Rest
            if "distance" in lapinfo:
                lap.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(lapinfo["distance"]))
            if "duration" in lapinfo:
                lap.Stats.MovingTime = ActivityStatistic(ActivityStatisticUnit.Time, value=timedelta(seconds=lapinfo["duration"]))
            if "calories" in lapinfo:
                lap.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=lapinfo["calories"])
            if "elevation_gain" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(lapinfo["elevation_gain"])))
            if "elevation_loss" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, loss=float(lapinfo["elevation_loss"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "avg_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, avg=float(lapinfo["avg_speed"])))
            if "max_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, max=float(lapinfo["max_heartrate"])))
            if "avg_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(lapinfo["avg_heartrate"])))
        if lap is None: # No explicit laps => make one that encompasses the entire activity
            lap = Lap()
            activity.Laps.append(lap)
            lap.Stats = activity.Stats
            lap.StartTime = activity.StartTime
            lap.EndTime = activity.EndTime

        if "location" not in activityData:
            activity.Stationary = True
        else:
            activity.Stationary = False
            timerStops = []
            if "timer_stops" in activityData:
                for stop in activityData["timer_stops"]:
                    timerStops.append([dateutil.parser.parse(stop[0]), dateutil.parser.parse(stop[1])])

            def isInTimerStop(timestamp):
                for stop in timerStops:
                    if timestamp >= stop[0] and timestamp < stop[1]:
                        return True
                    if timestamp >= stop[1]:
                        return False
                return False

              # Collate the individual streams into our waypoints.
            # Everything is resampled by nearest-neighbour to the rate of the location stream.
            parallel_indices = {}
            parallel_stream_lengths = {}
            for secondary_stream in ["elevation", "heartrate", "power", "cadence", "distance"]:
                if secondary_stream in activityData:
                    parallel_indices[secondary_stream] = 0
                    parallel_stream_lengths[secondary_stream] = len(activityData[secondary_stream])

            wasInPause = False
            currentLapIdx = 0
            lap = activity.Laps[currentLapIdx]
            for idx in range(0, len(activityData["location"]), 2):
                # Pick the nearest indices in the parallel streams
                for parallel_stream, parallel_index in parallel_indices.items():
                    if parallel_index + 2 == parallel_stream_lengths[parallel_stream]:
                        continue  # We're at the end of this stream
                    # Is the next datapoint a better choice than the current?
                    if abs(activityData["location"][idx] - activityData[parallel_stream][parallel_index + 2]) < abs(activityData["location"][idx] - activityData[parallel_stream][parallel_index]):
                        parallel_indices[parallel_stream] += 2
#.........这里部分代码省略.........
开发者ID:CptanPanic,项目名称:tapiriik,代码行数:103,代码来源:sporttracks.py


注:本文中的tapiriik.services.interchange.Lap.Intensity方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。