本文整理汇总了Python中tableau.Tableau.restrict方法的典型用法代码示例。如果您正苦于以下问题:Python Tableau.restrict方法的具体用法?Python Tableau.restrict怎么用?Python Tableau.restrict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tableau.Tableau
的用法示例。
在下文中一共展示了Tableau.restrict方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: epsilon_ik
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def epsilon_ik(itab, ktab, star=0):
"""
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import epsilon_ik
sage: epsilon_ik([[1,2],[3]], [[1,3],[2]])
1/4*[1, 3, 2] - 1/4*[2, 3, 1] + 1/4*[3, 1, 2] - 1/4*[3, 2, 1]
sage: epsilon_ik([[1,2],[3]], [[1,3],[2]], star=1)
Traceback (most recent call last):
...
ValueError: the two tableaux must be of the same shape
"""
it = Tableau(itab)
kt = Tableau(ktab)
if star:
it = it.restrict(it.size() - star)
kt = kt.restrict(kt.size() - star)
if it.shape() != kt.shape():
raise ValueError, "the two tableaux must be of the same shape"
mult = permutation_options['mult']
permutation_options['mult'] = 'l2r'
if kt == it:
res = epsilon(itab)
elif (it, kt) in epsilon_ik_cache:
res = epsilon_ik_cache[(it,kt)]
else:
epsilon_ik_cache[(it,kt)] = epsilon(it, star+1)*e_ik(it,kt,star)*epsilon(kt, star+1) * (1/kappa(it.shape()))
res = epsilon_ik_cache[(it,kt)]
permutation_options['mult'] = mult
return res
示例2: e_ik
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def e_ik(itab, ktab, star=0):
"""
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import e_ik
sage: e_ik([[1,2,3]], [[1,2,3]])
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: e_ik([[1,2,3]], [[1,2,3]], star=1)
[1, 2] + [2, 1]
"""
it = Tableau(itab)
kt = Tableau(ktab)
if star:
it = it.restrict(it.size() - star)
kt = kt.restrict(kt.size() - star)
if it.shape() != kt.shape():
raise ValueError, "the two tableaux must be of the same shape"
mult = permutation_options['mult']
permutation_options['mult'] = 'l2r'
if kt == it:
res = e(it)
elif (it, kt) in e_ik_cache:
res = e_ik_cache[(it,kt)]
else:
pi = pi_ik(it,kt)
e_ik_cache[(it,kt)] = e(it)*pi
res = e_ik_cache[(it,kt)]
permutation_options['mult'] = mult
return res
示例3: e_hat
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def e_hat(tab, star=0):
"""
The Young projection operator, an idempotent in the rational group algebra.
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import e_hat
sage: e_hat([[1,2,3]])
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
sage: e_hat([[1],[2]])
1/2*[1, 2] - 1/2*[2, 1]
There are differing conventions for the order of the symmetrizers
and antisymmetrizers. This example illustrates our conventions::
sage: e_hat([[1,2],[3]])
1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
"""
t = Tableau(tab)
if star:
t = t.restrict(t.size()-star)
if t in ehat_cache:
res = ehat_cache[t]
else:
res = (1/kappa(t.shape()))*e(t)
return res
示例4: epsilon
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def epsilon(tab, star=0):
"""
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import epsilon
sage: epsilon([[1,2]])
1/2*[1, 2] + 1/2*[2, 1]
sage: epsilon([[1],[2]])
1/2*[1, 2] - 1/2*[2, 1]
"""
t = Tableau(tab)
if star:
t = t.restrict(t.size() - star)
mult = permutation_options['mult']
permutation_options['mult'] = 'l2r'
if t in epsilon_cache:
res = epsilon_cache[t]
else:
if t.size() == 2:
epsilon_cache[t] = e(t)*(1/kappa(t.shape()))
res = epsilon_cache[t]
elif t == Tableau([[1]]):
epsilon_cache[t] = e(t)
res = epsilon_cache[t]
else:
epsilon_cache[t] = epsilon(t, 1)*e(t)*epsilon(t,1)*( 1 / kappa(t.shape()))
res = epsilon_cache[t]
permutation_options['mult'] = mult
return res
示例5: e_hat
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def e_hat(tab, star=0):
"""
The Young projection operator corresponding to the Young tableau
``tab`` (which is supposed to contain every integer from `1` to
its size precisely once, but may and may not be standard). This
is an idempotent in the rational group algebra.
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import e_hat
sage: e_hat([[1,2,3]])
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
sage: e_hat([[1],[2]])
1/2*[1, 2] - 1/2*[2, 1]
There are differing conventions for the order of the symmetrizers
and antisymmetrizers. This example illustrates our conventions::
sage: e_hat([[1,2],[3]])
1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
"""
t = Tableau(tab)
if star:
t = t.restrict(t.size()-star)
if t in ehat_cache:
res = ehat_cache[t]
else:
res = (1/kappa(t.shape()))*e(t)
return res
示例6: b
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def b(tableau, star=0):
r"""
The column projection operator corresponding to the Young tableau
``tableau`` (which is supposed to contain every integer from
`1` to its size precisely once, but may and may not be standard).
This is the signed sum (in the group algebra of the relevant
symmetric group over `\QQ`) of all the permutations which
preserve the column of ``tableau`` (where the signs are the usual
signs of the permutations). It is called `b_{\text{tableau}}` in
[EtRT]_, Section 4.2.
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import b
sage: b([[1,2]])
[1, 2]
sage: b([[1],[2]])
[1, 2] - [2, 1]
sage: b([])
[]
sage: b([[1, 2, 4], [5, 3]])
[1, 2, 3, 4, 5] - [1, 3, 2, 4, 5] - [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]
With the `l2r` setting for multiplication, the unnormalized
Young symmetrizer ``e(tableau)`` should be the product
``b(tableau) * a(tableau)`` for every ``tableau``. Let us check
this on the standard tableaux of size 5::
sage: from sage.combinat.symmetric_group_algebra import a, b, e
sage: all( e(t) == b(t) * a(t) for t in StandardTableaux(5) )
True
"""
t = Tableau(tableau)
if star:
t = t.restrict(t.size()-star)
cs = t.column_stabilizer().list()
n = t.size()
# This all should be over ZZ, not over QQ, but symmetric group
# algebras don't seem to preserve coercion (the one over ZZ
# doesn't coerce into the one over QQ even for the same n),
# and the QQ version of this method is more important, so let
# me stay with QQ.
# TODO: Fix this.
sgalg = SymmetricGroupAlgebra(QQ, n)
one = QQ.one()
P = permutation.Permutation
# Ugly hack for the case of an empty tableau, due to the
# annoyance of Permutation(Tableau([]).row_stabilizer()[0])
# being [1] rather than [] (which seems to have its origins in
# permutation group code).
# TODO: Fix this.
if len(tableau) == 0:
return sgalg.one()
cd = dict((P(v), v.sign()*one) for v in cs)
return sgalg._from_dict(cd)
示例7: a
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def a(tableau, star=0):
r"""
The row projection operator corresponding to the Young tableau
``tableau`` (which is supposed to contain every integer from
`1` to its size precisely once, but may and may not be standard).
This is the sum (in the group algebra of the relevant symmetric
group over `\QQ`) of all the permutations which preserve
the rows of ``tableau``. It is called `a_{\text{tableau}}` in
[EtRT]_, Section 4.2.
REFERENCES:
.. [EtRT] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai
Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina,
"Introduction to representation theory",
:arXiv:`0901.0827v5`.
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import a
sage: a([[1,2]])
[1, 2] + [2, 1]
sage: a([[1],[2]])
[1, 2]
sage: a([])
[]
sage: a([[1, 5], [2, 3], [4]])
[1, 2, 3, 4, 5] + [1, 3, 2, 4, 5] + [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]
"""
t = Tableau(tableau)
if star:
t = t.restrict(t.size()-star)
rs = t.row_stabilizer().list()
n = t.size()
# This all should be over ZZ, not over QQ, but symmetric group
# algebras don't seem to preserve coercion (the one over ZZ
# doesn't coerce into the one over QQ even for the same n),
# and the QQ version of this method is more important, so let
# me stay with QQ.
# TODO: Fix this.
sgalg = SymmetricGroupAlgebra(QQ, n)
one = QQ.one()
P = permutation.Permutation
# Ugly hack for the case of an empty tableau, due to the
# annoyance of Permutation(Tableau([]).row_stabilizer()[0])
# being [1] rather than [] (which seems to have its origins in
# permutation group code).
# TODO: Fix this.
if len(tableau) == 0:
return sgalg.one()
rd = dict((P(h), one) for h in rs)
return sgalg._from_dict(rd)
示例8: e
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def e(tableau, star=0):
"""
The unnormalized Young projection operator.
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import e
sage: e([[1,2]])
[1, 2] + [2, 1]
sage: e([[1],[2]])
[1, 2] - [2, 1]
There are differing conventions for the order of the symmetrizers
and antisymmetrizers. This example illustrates our conventions::
sage: e([[1,2],[3]])
[1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1]
"""
t = Tableau(tableau)
if star:
t = t.restrict(t.size()-star)
mult = permutation_options['mult']
permutation_options['mult'] = 'l2r'
if t in e_cache:
res = e_cache[t]
else:
rs = t.row_stabilizer().list()
cs = t.column_stabilizer().list()
n = t.size()
QSn = SymmetricGroupAlgebra(QQ, n)
one = QQ(1)
P = permutation.Permutation
rd = dict((P(h), one) for h in rs)
sym = QSn._from_dict(rd)
cd = dict((P(v), v.sign()*one) for v in cs)
antisym = QSn._from_dict(cd)
res = antisym*sym
e_cache[t] = res
permutation_options['mult'] = mult
return res
示例9: e
# 需要导入模块: from tableau import Tableau [as 别名]
# 或者: from tableau.Tableau import restrict [as 别名]
def e(tableau, star=0):
"""
The unnormalized Young projection operator corresponding to
the Young tableau ``tableau`` (which is supposed to contain
every integer from `1` to its size precisely once, but may
and may not be standard).
EXAMPLES::
sage: from sage.combinat.symmetric_group_algebra import e
sage: e([[1,2]])
[1, 2] + [2, 1]
sage: e([[1],[2]])
[1, 2] - [2, 1]
sage: e([])
[]
There are differing conventions for the order of the symmetrizers
and antisymmetrizers. This example illustrates our conventions::
sage: e([[1,2],[3]])
[1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1]
"""
t = Tableau(tableau)
if star:
t = t.restrict(t.size()-star)
mult = permutation_options['mult']
permutation_options['mult'] = 'l2r'
if t in e_cache:
res = e_cache[t]
else:
rs = t.row_stabilizer().list()
cs = t.column_stabilizer().list()
n = t.size()
QSn = SymmetricGroupAlgebra(QQ, n)
one = QQ.one()
P = permutation.Permutation
rd = dict((P(h), one) for h in rs)
sym = QSn._from_dict(rd)
cd = dict((P(v), v.sign()*one) for v in cs)
antisym = QSn._from_dict(cd)
res = antisym*sym
# Ugly hack for the case of an empty tableau, due to the
# annoyance of Permutation(Tableau([]).row_stabilizer()[0])
# being [1] rather than [] (which seems to have its origins in
# permutation group code).
# TODO: Fix this.
if len(tableau) == 0:
res = QSn.one()
e_cache[t] = res
permutation_options['mult'] = mult
return res