本文整理汇总了Python中sympy.tensor.tensor.tensor_indices函数的典型用法代码示例。如果您正苦于以下问题:Python tensor_indices函数的具体用法?Python tensor_indices怎么用?Python tensor_indices使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了tensor_indices函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_get_lines
def test_get_lines():
i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13 = \
tensor_indices('i0:14', G.LorentzIndex)
s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16 = \
tensor_indices('s0:17', DiracSpinorIndex)
t = G(i1,s1,-s2)*G(i2,s3,-s4)*G(i4,s2,-s6)*G(i3,s4,-s3)
r = get_lines(t, DiracSpinorIndex)
assert r == ([[0, 2]], [[1, 3]], [])
t = G(i1,s1,-s2)*G(i2,s2,-s3)*G(i3,s3,-s4)*G(i4,s4,-s5)*\
G(i5,s6,-s7)*G(i6,s7,-s8)*G(i7,s8,-s9)*G(i8,s9,-s6)
r = get_lines(t, DiracSpinorIndex)
assert r == ([[0, 1, 2, 3]], [[4, 5, 6, 7]], [])
t = G(i1,s1,-s2)*G(i0,s0,-s10)*G(i2,s2,-s3)*G(i3,s3,-s4)*\
G(i4,s4,-s5)*G(i5,s6,-s7)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
G(i8,s9,-s6)*G(i9,s10,-s0)
r = get_lines(t, DiracSpinorIndex)
assert r == ([[0, 2, 3, 4]], [[5, 6, 7, 8], [1, 9]], [])
t = G(i1,s1,-s2)*G(i11,s12,-s13)*G(i0,s0,-s10)*G(i2,s2,-s3)*G(i3,s3,-s4)*\
G(i4,s4,-s5)*G(i5,s6,-s7)*G(i10,s11,-s12)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
G(i8,s9,-s6)*G(i9,s10,-s0)
r = get_lines(t, DiracSpinorIndex)
assert r == ([[0, 3, 4, 5], [7, 1]], [[6, 8, 9, 10], [2, 11]], [])
t = G(i4,s4,-s5)*G(i5,s6,-s7)*G(i10,s11,-s12)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
G(i8,s9,-s6)*G(i9,s10,-s0)*\
G(i1,s1,-s2)*G(i11,s12,-s13)*G(i0,s0,-s10)*G(i2,s2,-s3)*G(i3,s3,-s4)
r = get_lines(t, DiracSpinorIndex)
assert r == ([[2, 8], [7, 10, 11, 0]], [[1, 3, 4, 5], [6, 9]], [])
t = G(i8,s9,-s6)*G(i9,s10,-s0)*G(i4,s4,-s5)*G(i13,s14,-s15)*\
G(i10,s11,-s12)*G(i1,s1,-s2)*G(i11,s12,-s13)*\
G(i0,s0,-s10)*G(i6,s7,-s8)*G(i7,s8,-s9)*\
G(i2,s2,-s3)*G(i12,s13,-s14)*G(i3,s3,-s4)*G(i5,s6,-s7)
r = get_lines(t, DiracSpinorIndex)
assert r == ([[4, 6, 11, 3], [5, 10, 12, 2]], [[1, 7], [0, 13, 8, 9]], [])
示例2: test_TensorManager
def test_TensorManager():
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
LorentzH = TensorIndexType('LorentzH', dummy_fmt='LH')
i, j = tensor_indices('i,j', Lorentz)
ih, jh = tensor_indices('ih,jh', LorentzH)
p, q = tensorhead('p q', [Lorentz], [[1]])
ph, qh = tensorhead('ph qh', [LorentzH], [[1]])
Gsymbol = Symbol('Gsymbol')
GHsymbol = Symbol('GHsymbol')
TensorManager.set_comm(Gsymbol, GHsymbol, 0)
G = tensorhead('G', [Lorentz], [[1]], Gsymbol)
assert TensorManager._comm_i2symbol[G.comm] == Gsymbol
GH = tensorhead('GH', [LorentzH], [[1]], GHsymbol)
ps = G(i)*p(-i)
psh = GH(ih)*ph(-ih)
t = ps + psh
t1 = t*t
assert t1 == ps*ps + 2*ps*psh + psh*psh
qs = G(i)*q(-i)
qsh = GH(ih)*qh(-ih)
assert ps*qsh == qsh*ps
assert ps*qs != qs*ps
n = TensorManager.comm_symbols2i(Gsymbol)
assert TensorManager.comm_i2symbol(n) == Gsymbol
assert GHsymbol in TensorManager._comm_symbols2i
raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2))
TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1))
assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1
TensorManager.clear()
assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}]
assert GHsymbol not in TensorManager._comm_symbols2i
nh = TensorManager.comm_symbols2i(GHsymbol)
assert GHsymbol in TensorManager._comm_symbols2i
示例3: test_simplify_lines
def test_simplify_lines():
i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12 = tensor_indices('i0:13', G.LorentzIndex)
s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16 = \
tensor_indices('s0:17', DiracSpinorIndex)
g = G.LorentzIndex.metric
Sdelta = DiracSpinorIndex.delta
t = G(i1,s1,-s2)*G(i2,s2,-s1)*G(i3,s4,-s5)*G(i4,s5,-s6)*G(i5,s7,-s8)
r = G.simplify_lines(t)
assert r.equals(4*G(i5, s7, -s8)*G(i3, s4, -s0)*G(i4, s0, -s6)*g(i1, i2))
t = G(i1,s1,-s2)*G(i2,s2,-s1)*G(i3,s4,-s5)*G(-i3,s5,-s6)*G(i5,s7,-s8)
r = G.simplify_lines(t)
assert r.equals(16*G(i5, s7, -s8)*Sdelta(s4, -s6)*g(i1, i2))
t = G(i1,s1,-s2)*G(i2,s2,-s1)*G(i3,s4,-s5)*G(i4,s5,-s6)*G(i5,s7,-s8)
r = G.simplify_lines(t)
assert r.equals(4*G(i5, s7, -s8)*G(i3, s4, s0)*G(i4, -s0, -s6)*g(i1, i2))
t = G(i5,s7,-s8)*G(i6,s9,-s10)*G(i1,s1,-s2)*G(i3,s4,-s5)*G(i2,s2,-s1)*G(i4,s5,-s6)*G(-i6,s10,-s9)
r = G.simplify_lines(t)
assert r.equals(64*G(i5, s7, -s8)*G(i3, s4, s0)*G(i4, -s0, -s6)*g(i1, i2))
t = G(i5,s7,-s8)*G(i6,s9,-s10)*G(i1,s1,-s2)*G(i7,s12,-s11)*G(i3,s4,-s5)*\
G(i2,s2,-s1)*G(i4,s5,-s6)*G(-i6,s10,-s9)*G(-i7,s11,-s13)
r = G.simplify_lines(t)
assert r.equals(256*G(i5, s7, -s8)*G(i3, s4, s0)*G(i4, -s0, -s6)*\
g(i1, i2)*Sdelta(s12,-s13))
示例4: test_indices
def test_indices():
Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
a, b, c, d = tensor_indices("a,b,c,d", Lorentz)
assert a.tensortype == Lorentz
assert a != -a
A, B = tensorhead("A B", [Lorentz] * 2, [[1] * 2])
t = A(a, b) * B(-b, c)
indices = t.get_indices()
L_0 = TensorIndex("L_0", Lorentz)
assert indices == [a, L_0, -L_0, c]
raises(ValueError, lambda: tensor_indices(3, Lorentz))
raises(ValueError, lambda: A(a, b, c))
示例5: test_indices
def test_indices():
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
assert a.tensortype == Lorentz
assert a != -a
A, B = tensorhead('A B', [Lorentz]*2, [[1]*2])
t = A(a,b)*B(-b,c)
indices = t.get_indices()
L_0 = TensorIndex('L_0', Lorentz)
assert indices == [a, L_0, -L_0, c]
raises(ValueError, lambda: tensor_indices(3, Lorentz))
raises(ValueError, lambda: A(a,b,c))
示例6: test_canonicalize2
def test_canonicalize2():
D = Symbol("D")
Eucl = TensorIndexType("Eucl", metric=0, dim=D, dummy_fmt="E")
i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14 = tensor_indices("i0:15", Eucl)
A = tensorhead("A", [Eucl] * 3, [[3]])
# two examples from Cvitanovic, Group Theory page 59
# of identities for antisymmetric tensors of rank 3
# contracted according to the Kuratowski graph eq.(6.59)
t = A(i0, i1, i2) * A(-i1, i3, i4) * A(-i3, i7, i5) * A(-i2, -i5, i6) * A(-i4, -i6, i8)
t1 = t.canon_bp()
assert t1 == 0
# eq.(6.60)
# t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*
# A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14)
t = (
A(i0, i1, i2)
* A(-i1, i3, i4)
* A(-i2, i5, i6)
* A(-i3, i7, i8)
* A(-i6, -i7, i9)
* A(-i8, i10, i13)
* A(-i5, -i10, i11)
* A(-i4, -i11, i12)
* A(-i9, -i12, i14)
)
t1 = t.canon_bp()
assert t1 == 0
示例7: test_riemann_invariants
def test_riemann_invariants():
Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = tensor_indices("d0:12", Lorentz)
# R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1]
# T_c = -R^{d0 d1}_{d0 d1}
R = tensorhead("R", [Lorentz] * 4, [[2, 2]])
t = R(d0, d1, -d1, -d0)
tc = t.canon_bp()
assert str(tc) == "-R(L_0, L_1, -L_0, -L_1)"
# R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} *
# R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10}
# can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22,
# 17,19,21<F10,23, 24,25]
# T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} *
# R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11}
t = (
R(-d11, d1, -d0, d5)
* R(d6, d4, d0, -d5)
* R(-d7, -d2, -d8, -d9)
* R(-d10, -d3, -d6, -d4)
* R(d2, d7, d11, -d1)
* R(d8, d9, d3, d10)
)
tc = t.canon_bp()
assert (
str(tc)
== "R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)"
)
示例8: test_pprint
def test_pprint():
Lorentz = TensorIndexType('Lorentz')
i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz)
A = tensorhead('A', [Lorentz], [[1]])
assert pretty(A) == "A(Lorentz)"
assert pretty(A(i0)) == "A(i0)"
示例9: test_special_eq_ne
def test_special_eq_ne():
# test special equality cases:
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz)
# A, B symmetric
A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
p, q, r = tensorhead('p,q,r', [Lorentz], [[1]])
t = 0*A(a, b)
assert t == 0
assert t == S.Zero
assert p(i) != A(a, b)
assert A(a, -a) != A(a, b)
assert 0*(A(a, b) + B(a, b)) == 0
assert 0*(A(a, b) + B(a, b)) == S.Zero
assert 3*(A(a, b) - A(a, b)) == S.Zero
assert p(i) + q(i) != A(a, b)
assert p(i) + q(i) != A(a, b) + B(a, b)
assert p(i) - p(i) == 0
assert p(i) - p(i) == S.Zero
assert A(a, b) == A(b, a)
示例10: test_fun
def test_fun():
D = Symbol('D')
Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
a,b,c,d,e = tensor_indices('a,b,c,d,e', Lorentz)
g = Lorentz.metric
p, q = tensorhead('p q', [Lorentz], [[1]])
t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d)
assert t(a,b,c) == t
assert t - t(b,a,c) == q(c)*p(a)*q(b) - q(c)*p(b)*q(a)
assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e)
t1 = t.fun_eval((a,b),(b,a))
assert t1 == q(c)*p(b)*q(a) + g(a,b)*g(c,d)*q(-d)
# check that g_{a b; c} = 0
# example taken from L. Brewin
# "A brief introduction to Cadabra" arxiv:0903.2085
# dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c
dg = tensorhead('dg', [Lorentz]*3, [[1], [1]*2])
# gamma^a_{b c} is the Christoffel symbol
gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c))
# t = g_{a b; c}
t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c)
t = t.contract_metric(g, True)
assert t == 0
t = q(c)*p(a)*q(b)
assert t(b,c,d) == q(d)*p(b)*q(c)
示例11: test_mul
def test_mul():
from sympy.abc import x
Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
sym = tensorsymmetry([1]*2)
t = TensMul.from_data(S.One, [], [], [])
assert str(t) == '1'
A, B = tensorhead('A B', [Lorentz]*2, [[1]*2])
t = (1 + x)*A(a, b)
assert str(t) == '(x + 1)*A(a, b)'
assert t.types == [Lorentz]
assert t.rank == 2
assert t.dum == []
assert t.coeff == 1 + x
assert sorted(t.free) == [(a, 0, 0), (b, 1, 0)]
assert t.components == [A]
t = A(-b, a)*B(-a, c)*A(-c, d)
t1 = tensor_mul(*t.split())
assert t == t(-b, d)
assert t == t1
assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], [])
t = TensMul.from_data(1, [], [], [])
zsym = tensorsymmetry()
typ = TensorType([], zsym)
C = typ('C')
assert str(C()) == 'C'
assert str(t) == '1'
assert t.split()[0] == t
raises(ValueError, lambda: TIDS.free_dum_from_indices(a, a))
raises(ValueError, lambda: TIDS.free_dum_from_indices(-a, -a))
raises(ValueError, lambda: A(a, b)*A(a, c))
t = A(a, b)*A(-a, c)
raises(ValueError, lambda: t(a, b, c))
示例12: test_tensor_element
def test_tensor_element():
L = TensorIndexType("L")
i, j, k, l, m, n = tensor_indices("i j k l m n", L)
A = tensorhead("A", [L, L], [[1], [1]])
a = A(i, j)
assert isinstance(TensorElement(a, {}), Tensor)
assert isinstance(TensorElement(a, {k: 1}), Tensor)
te1 = TensorElement(a, {Symbol("i"): 1})
assert te1.free == [(j, 0)]
assert te1.get_free_indices() == [j]
assert te1.dum == []
te2 = TensorElement(a, {i: 1})
assert te2.free == [(j, 0)]
assert te2.get_free_indices() == [j]
assert te2.dum == []
assert te1 == te2
array = Array([[1, 2], [3, 4]])
assert te1.replace_with_arrays({A(i, j): array}, [j]) == array[1, :]
示例13: test_TensorIndexType
def test_TensorIndexType():
D = Symbol("D")
G = Metric("g", False)
Lorentz = TensorIndexType("Lorentz", metric=G, dim=D, dummy_fmt="L")
m0, m1, m2, m3, m4 = tensor_indices("m0:5", Lorentz)
sym2 = tensorsymmetry([1] * 2)
sym2n = tensorsymmetry(*get_symmetric_group_sgs(2))
assert sym2 == sym2n
g = Lorentz.metric
assert str(g) == "g(Lorentz,Lorentz)"
assert Lorentz.eps_dim == Lorentz.dim
TSpace = TensorIndexType("TSpace")
i0, i1 = tensor_indices("i0 i1", TSpace)
g = TSpace.metric
A = tensorhead("A", [TSpace] * 2, [[1] * 2])
assert str(A(i0, -i0).canon_bp()) == "A(TSpace_0, -TSpace_0)"
示例14: test_bug_correction_tensor_indices
def test_bug_correction_tensor_indices():
# to make sure that tensor_indices does not return a list if creating
# only one index:
from sympy.tensor.tensor import tensor_indices, TensorIndexType, TensorIndex
A = TensorIndexType("A")
i = tensor_indices('i', A)
assert not isinstance(i, (tuple, list))
assert isinstance(i, TensorIndex)
示例15: test_TensorIndexType
def test_TensorIndexType():
D = Symbol('D')
G = Metric('g', False)
Lorentz = TensorIndexType('Lorentz', metric=G, dim=D, dummy_fmt='L')
m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz)
sym2 = tensorsymmetry([1]*2)
sym2n = tensorsymmetry(*get_symmetric_group_sgs(2))
assert sym2 == sym2n
g = Lorentz.metric
assert str(g) == 'g(Lorentz,Lorentz)'
assert Lorentz.eps_dim == Lorentz.dim
TSpace = TensorIndexType('TSpace')
i0, i1 = tensor_indices('i0 i1', TSpace)
g = TSpace.metric
A = tensorhead('A', [TSpace]*2, [[1]*2])
assert str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)'