当前位置: 首页>>代码示例>>Python>>正文


Python core.condition函数代码示例

本文整理汇总了Python中sympy.strategies.core.condition函数的典型用法代码示例。如果您正苦于以下问题:Python condition函数的具体用法?Python condition怎么用?Python condition使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了condition函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _proxy_rewriter

 def _proxy_rewriter(criteria):
     criteria, integral = criteria
     integrand, symbol = integral
     args = criteria + list(integral)
     if condition(*args):
         rewritten = rewrite(*args)
         if rewritten != integrand:
             return RewriteRule(rewritten, integral_steps(rewritten, symbol), integrand, symbol)
开发者ID:latot,项目名称:sympy,代码行数:8,代码来源:manualintegrate.py

示例2: _rewriter

 def _rewriter(integral):
     integrand, symbol = integral
     if condition(*integral):
         rewritten = rewrite(*integral)
         if rewritten != integrand:
             substep = integral_steps(rewritten, symbol)
             if not isinstance(substep, DontKnowRule) and substep:
                 return RewriteRule(rewritten, substep, integrand, symbol)
开发者ID:latot,项目名称:sympy,代码行数:8,代码来源:manualintegrate.py

示例3: _rewriter

 def _rewriter(integral):
     integrand, symbol = integral
     if condition(*integral):
         rewritten = rewrite(*integral)
         if rewritten != integrand:
             return RewriteRule(
                 rewritten,
                 integral_steps(rewritten, symbol),
                 integrand, symbol)
开发者ID:Abhityagi16,项目名称:sympy,代码行数:9,代码来源:manualintegrate.py

示例4: integral_steps

def integral_steps(integrand, symbol, **options):
    """Returns the steps needed to compute an integral.

    This function attempts to mirror what a student would do by hand as
    closely as possible.

    SymPy Gamma uses this to provide a step-by-step explanation of an
    integral. The code it uses to format the results of this function can be
    found at
    https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py.

    Examples
    ========

    >>> from sympy import exp, sin, cos
    >>> from sympy.integrals.manualintegrate import integral_steps
    >>> from sympy.abc import x
    >>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x))) \
    # doctest: +NORMALIZE_WHITESPACE
    URule(u_var=_u, u_func=exp(x), constant=1,
        substep=ArctanRule(context=1/(_u**2 + 1), symbol=_u),
        context=exp(x)/(exp(2*x) + 1), symbol=x)
    >>> print(repr(integral_steps(sin(x), x))) \
    # doctest: +NORMALIZE_WHITESPACE
    TrigRule(func='sin', arg=x, context=sin(x), symbol=x)
    >>> print(repr(integral_steps((x**2 + 3)**2 , x))) \
    # doctest: +NORMALIZE_WHITESPACE
    RewriteRule(rewritten=x**4 + 6*x**2 + 9,
    substep=AddRule(substeps=[PowerRule(base=x, exp=4, context=x**4, symbol=x),
        ConstantTimesRule(constant=6, other=x**2,
            substep=PowerRule(base=x, exp=2, context=x**2, symbol=x),
                context=6*x**2, symbol=x),
        ConstantRule(constant=9, context=9, symbol=x)],
    context=x**4 + 6*x**2 + 9, symbol=x), context=(x**2 + 3)**2, symbol=x)


    Returns
    =======
    rule : namedtuple
        The first step; most rules have substeps that must also be
        considered. These substeps can be evaluated using ``manualintegrate``
        to obtain a result.

    """
    cachekey = (integrand, symbol)
    if cachekey in _integral_cache:
        if _integral_cache[cachekey] is None:
            # cyclic integral! null_safe will eliminate that path
            return None
        else:
            return _integral_cache[cachekey]
    else:
        _integral_cache[cachekey] = None

    integral = IntegralInfo(integrand, symbol)

    def key(integral):
        integrand = integral.integrand

        if isinstance(integrand, TrigonometricFunction):
            return TrigonometricFunction
        elif isinstance(integrand, sympy.Derivative):
            return sympy.Derivative
        elif symbol not in integrand.free_symbols:
            return sympy.Number
        else:
            for cls in (sympy.Pow, sympy.Symbol, sympy.exp, sympy.log,
                        sympy.Add, sympy.Mul, sympy.atan, sympy.asin, sympy.acos, sympy.Heaviside):
                if isinstance(integrand, cls):
                    return cls

    def integral_is_subclass(*klasses):
        def _integral_is_subclass(integral):
            k = key(integral)
            return k and issubclass(k, klasses)
        return _integral_is_subclass

    result = do_one(
        null_safe(switch(key, {
            sympy.Pow: do_one(null_safe(power_rule), null_safe(inverse_trig_rule)),
            sympy.Symbol: power_rule,
            sympy.exp: exp_rule,
            sympy.Add: add_rule,
            sympy.Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule)),
            sympy.Derivative: derivative_rule,
            TrigonometricFunction: trig_rule,
            sympy.Heaviside: heaviside_rule,
            sympy.Number: constant_rule
        })),
        do_one(
            null_safe(trig_rule),
            null_safe(alternatives(
                rewrites_rule,
                substitution_rule,
                condition(
                    integral_is_subclass(sympy.Mul, sympy.Pow),
                    partial_fractions_rule),
                condition(
                    integral_is_subclass(sympy.Mul, sympy.log, sympy.atan, sympy.asin, sympy.acos),
                    parts_rule),
#.........这里部分代码省略.........
开发者ID:DVNSarma,项目名称:sympy,代码行数:101,代码来源:manualintegrate.py

示例5: integral_steps

def integral_steps(integrand, symbol, **options):
    """Returns the steps needed to compute an integral.

    This function attempts to mirror what a student would do by hand as
    closely as possible.

    Returns
    =======
    rule : namedtuple
        The first step; most rules have substeps that must also be
        considered. These substeps can be evaluated using `manualintegrate`
        to obtain a result.
    """
    cachekey = (integrand, symbol)
    if cachekey in _integral_cache:
        if _integral_cache[cachekey] is None:
            # cyclic integral! null_safe will eliminate that path
            return None
        else:
            return _integral_cache[cachekey]
    else:
        _integral_cache[cachekey] = None

    integral = IntegralInfo(integrand, symbol)

    def key(integral):
        integrand = integral.integrand

        if isinstance(integrand, TrigonometricFunction):
            return TrigonometricFunction
        elif symbol not in integrand.free_symbols:
            return 'constant'
        else:
            for cls in (sympy.Pow, sympy.Symbol, sympy.exp,
                        sympy.Add, sympy.Mul):
                if isinstance(integrand, cls):
                    return cls

    result = do_one(
        null_safe(switch(key, {
            sympy.Pow: do_one(null_safe(power_rule), null_safe(arctan_rule)),
            sympy.Symbol: power_rule,
            sympy.exp: exp_rule,
            sympy.Add: add_rule,
            sympy.Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule)),
            TrigonometricFunction: trig_rule,
            'constant': constant_rule
        })),
        null_safe(
            alternatives(
                substitution_rule,
                parts_rule,
                condition(lambda integral: key(integral) == sympy.Mul,
                          partial_fractions_rule),
                condition(lambda integral: key(integral) in (sympy.Mul, sympy.Pow),
                          distribute_expand_rule),
                trig_powers_products_rule
            )
        ),
        fallback_rule)(integral)
    _integral_cache[cachekey] = result
    return result
开发者ID:cstrobach83,项目名称:sympy,代码行数:62,代码来源:manualintegrate.py

示例6: test_condition

def test_condition():
    rl = condition(lambda x: x%2 == 0, posdec)
    assert rl(5) == 5
    assert rl(4) == 3
开发者ID:AdrianPotter,项目名称:sympy,代码行数:4,代码来源:test_core.py


注:本文中的sympy.strategies.core.condition函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。