本文整理汇总了Python中sympy.solvers.solveset.solveset_real函数的典型用法代码示例。如果您正苦于以下问题:Python solveset_real函数的具体用法?Python solveset_real怎么用?Python solveset_real使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了solveset_real函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_garbage_input
def test_garbage_input():
raises(ValueError, lambda: solveset_real([x], x))
raises(ValueError, lambda: solveset_real(x, pi))
raises(ValueError, lambda: solveset_real(x, x ** 2))
raises(ValueError, lambda: solveset_complex([x], x))
raises(ValueError, lambda: solveset_complex(x, pi))
示例2: test_solve_rational
def test_solve_rational():
assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
assert solveset_real((x**2/(7 - x)).diff(x), x) == \
FiniteSet(S(0), S(14))
示例3: test_solve_trig
def test_solve_trig():
from sympy.abc import n
assert solveset_real(sin(x), x) == Union(
imageset(Lambda(n, 2 * pi * n), S.Integers), imageset(Lambda(n, 2 * pi * n + pi), S.Integers)
)
assert solveset_real(sin(x) - 1, x) == imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)
assert solveset_real(cos(x), x) == Union(
imageset(Lambda(n, 2 * pi * n - pi / 2), S.Integers), imageset(Lambda(n, 2 * pi * n + pi / 2), S.Integers)
)
assert solveset_real(sin(x) + cos(x), x) == Union(
imageset(Lambda(n, 2 * n * pi - pi / 4), S.Integers), imageset(Lambda(n, 2 * n * pi + 3 * pi / 4), S.Integers)
)
assert solveset_real(sin(x) ** 2 + cos(x) ** 2, x) == S.EmptySet
assert solveset_complex(cos(x) - S.Half, x) == Union(
imageset(Lambda(n, 2 * n * pi + pi / 3), S.Integers), imageset(Lambda(n, 2 * n * pi - pi / 3), S.Integers)
)
y, a = symbols("y,a")
assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == Union(
imageset(Lambda(n, 2 * n * pi), S.Integers),
imageset(Lambda(n, -I * (I * (2 * n * pi + arg(-exp(-2 * I * y))) + 2 * im(y))), S.Integers),
)
示例4: test_uselogcombine_1
def test_uselogcombine_1():
assert solveset_real(log(x - 3) + log(x + 3), x) == \
FiniteSet(sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2)
示例5: test_solve_abs
def test_solve_abs():
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))
示例6: test_solve_trig_simplified
def test_solve_trig_simplified():
from sympy.abc import n
assert solveset_real(sin(x), x) == imageset(Lambda(n, n * pi), S.Integers)
assert solveset_real(cos(x), x) == imageset(Lambda(n, n * pi + pi / 2), S.Integers)
assert solveset_real(cos(x) + sin(x), x) == imageset(Lambda(n, n * pi - pi / 4), S.Integers)
示例7: test_errorinverses
def test_errorinverses():
assert solveset_real(erf(x) - S.One/2, x) == \
FiniteSet(erfinv(S.One/2))
assert solveset_real(erfinv(x) - 2, x) == \
FiniteSet(erf(2))
assert solveset_real(erfc(x) - S.One, x) == \
FiniteSet(erfcinv(S.One))
assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
示例8: test_piecewise
def test_piecewise():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
f = Piecewise(((x - 2) ** 2, x >= 0), (0, True))
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise((x - 3, S(0) <= x - 3), (3 - x, S(0) > x - 3))
y = Symbol("y", positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
示例9: test_piecewise
def test_piecewise():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise(
(x - 3, S(0) <= x - 3),
(3 - x, S(0) > x - 3)
)
y = Symbol('y', positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
示例10: test_solve_polynomial_cv_1a
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to
a polynomial equation using the change of variable y -> x**Rational(p, q)
"""
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x ** Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x ** Rational(1, 3) - 3, x) == FiniteSet(27)
assert solveset_real(x * (x ** (S(1) / 3) - 3), x) == FiniteSet(S(0), S(27))
示例11: test_solve_sqrt_3
def test_solve_sqrt_3():
R = Symbol("R")
eq = sqrt(2) * R * sqrt(1 / (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 / (R + 1)) - 1)
sol = solveset_complex(eq, R)
assert sol == FiniteSet(
*[
S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3,
-sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
+ 40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
+ sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
+ S(5) / 3
+ I
* (
-sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
- sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
+ 40 * im(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
),
]
)
# the number of real roots will depend on the value of m: for m=1 there are 4
# and for m=-1 there are none.
eq = -sqrt((m - q) ** 2 + (-m / (2 * q) + S(1) / 2) ** 2) + sqrt(
(-m ** 2 / 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
+ (m ** 2 / 2 - m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
)
raises(NotImplementedError, lambda: solveset_real(eq, q))
示例12: test_solve_polynomial
def test_solve_polynomial():
assert solveset_real(3 * x - 2, x) == FiniteSet(Rational(2, 3))
assert solveset_real(x ** 2 - 1, x) == FiniteSet(-S(1), S(1))
assert solveset_real(x - y ** 3, x) == FiniteSet(y ** 3)
a11, a12, a21, a22, b1, b2 = symbols("a11, a12, a21, a22, b1, b2")
assert solveset_real(x ** 3 - 15 * x - 4, x) == FiniteSet(-2 + 3 ** Rational(1, 2), S(4), -2 - 3 ** Rational(1, 2))
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x ** Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x ** Rational(1, 3) - 3, x) == FiniteSet(27)
assert len(solveset_real(x ** 5 + x ** 3 + 1, x)) == 1
assert len(solveset_real(-2 * x ** 3 + 4 * x ** 2 - 2 * x + 6, x)) > 0
示例13: test_rewrite_trigh
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half))
示例14: test_solve_abs
def test_solve_abs():
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x + 3) - 2 * Abs(x - 3), x) == FiniteSet(1, 9)
assert solveset_real(2 * Abs(x) - Abs(x - 1), x) == FiniteSet(-1, Rational(1, 3))
assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))
# issue 9565. Note: solveset_real does not solve this as it is
# solveset's job to handle Relationals
assert solveset(Abs((x - 1) / (x - 5)) <= S(1) / 3, domain=S.Reals) == Interval(-1, 2)
# issue #10069
eq = abs(1 / (x - 1)) - 1 > 0
u = Union(Interval.open(0, 1), Interval.open(1, 2))
assert solveset_real(eq, x) == u
assert solveset(eq, x, domain=S.Reals) == u
raises(ValueError, lambda: solveset(abs(x) - 1, x))
示例15: test_solve_trig
def test_solve_trig():
from sympy.abc import n
assert solveset_real(sin(x), x) == \
Union(imageset(Lambda(n, 2*pi*n), S.Integers),
imageset(Lambda(n, 2*pi*n + pi), S.Integers))
assert solveset_real(sin(x) - 1, x) == \
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)
assert solveset_real(cos(x), x) == \
Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))
assert solveset_real(sin(x) + cos(x), x) == \
Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),
imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))
assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet