本文整理汇总了Python中sympy.solvers.solveset.solveset函数的典型用法代码示例。如果您正苦于以下问题:Python solveset函数的具体用法?Python solveset怎么用?Python solveset使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了solveset函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_issue_9611
def test_issue_9611():
x = Symbol("x")
a = Symbol("a")
y = Symbol("y")
assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complexes
示例2: test_issue_9522
def test_issue_9522():
x = Symbol('x')
expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
expr2 = Eq(1/x + x, 1/x)
assert solveset(expr1, x, S.Reals) == EmptySet()
assert solveset(expr2, x, S.Reals) == EmptySet()
示例3: test_issue_9611
def test_issue_9611():
x = Symbol("x", real=True)
a = Symbol("a", real=True)
y = Symbol("y")
assert solveset(Eq(x - x + a, a), x) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complex
示例4: test_issue_9522
def test_issue_9522():
x = Symbol("x", real=True)
expr1 = Eq(1 / (x ** 2 - 4) + x, 1 / (x ** 2 - 4) + 2)
expr2 = Eq(1 / x + x, 1 / x)
assert solveset(expr1, x) == EmptySet()
assert solveset(expr2, x) == EmptySet()
示例5: test_issue_9778
def test_issue_9778():
assert solveset(x ** 3 + 1, x, S.Reals) == FiniteSet(-1)
assert solveset(x ** (S(3) / 5) + 1, x, S.Reals) == S.EmptySet
assert solveset(x ** 3 + y, x, S.Reals) == Intersection(
Interval(-oo, oo),
FiniteSet((-y) ** (S(1) / 3) * Piecewise((1, Ne(-im(y), 0)), ((-1) ** (S(2) / 3), -y < 0), (1, True))),
)
示例6: elm_domain
def elm_domain(expr, intrvl):
""" Finds the domain of an expression in any given interval """
from sympy.solvers.solveset import solveset
_start = intrvl.start
_end = intrvl.end
_singularities = solveset(expr.as_numer_denom()[1], symb,
domain=S.Reals)
if intrvl.right_open:
if _end is S.Infinity:
_domain1 = S.Reals
else:
_domain1 = solveset(expr < _end, symb, domain=S.Reals)
else:
_domain1 = solveset(expr <= _end, symb, domain=S.Reals)
if intrvl.left_open:
if _start is S.NegativeInfinity:
_domain2 = S.Reals
else:
_domain2 = solveset(expr > _start, symb, domain=S.Reals)
else:
_domain2 = solveset(expr >= _start, symb, domain=S.Reals)
# domain in the interval
expr_with_sing = Intersection(_domain1, _domain2)
expr_domain = Complement(expr_with_sing, _singularities)
return expr_domain
示例7: test_issue_9556
def test_issue_9556():
x = Symbol('x')
b = Symbol('b', positive=True)
assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()
assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()
assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()
示例8: contains
def contains(self, other):
"""
Is the other GeometryEntity contained within this Segment?
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s2 = Segment(p2, p1)
>>> s.contains(s2)
True
"""
if isinstance(other, Segment):
return other.p1 in self and other.p2 in self
elif isinstance(other, Point):
if Point.is_collinear(self.p1, self.p2, other):
t = Dummy('t')
x, y = self.arbitrary_point(t).args
if self.p1.x != self.p2.x:
ti = list(solveset(x - other.x, t))[0]
else:
ti = list(solveset(y - other.y, t))[0]
if ti.is_number:
return 0 <= ti <= 1
return None
return False
示例9: test_issue_9556
def test_issue_9556():
x = Symbol("x", real=True)
b = Symbol("b", positive=True)
assert solveset(Abs(x) + 1, x) == EmptySet()
assert solveset(Abs(x) + b, x) == EmptySet()
assert solveset(Eq(b, -1), b) == EmptySet()
示例10: continuous_domain
def continuous_domain(f, symbol, domain):
"""
Returns the intervals in the given domain for which the function is continuous.
This method is limited by the ability to determine the various
singularities and discontinuities of the given function.
Examples
========
>>> from sympy import Symbol, S, tan, log, pi, sqrt
>>> from sympy.sets import Interval
>>> from sympy.calculus.util import continuous_domain
>>> x = Symbol('x')
>>> continuous_domain(1/x, x, S.Reals)
(-oo, 0) U (0, oo)
>>> continuous_domain(tan(x), x, Interval(0, pi))
[0, pi/2) U (pi/2, pi]
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
[2, 5]
>>> continuous_domain(log(2*x - 1), x, S.Reals)
(1/2, oo)
"""
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.solvers.solveset import solveset, _has_rational_power
if domain.is_subset(S.Reals):
constrained_interval = domain
for atom in f.atoms(Pow):
predicate, denom = _has_rational_power(atom, symbol)
constraint = S.EmptySet
if predicate and denom == 2:
constraint = solve_univariate_inequality(atom.base >= 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
for atom in f.atoms(log):
constraint = solve_univariate_inequality(atom.args[0] > 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
domain = constrained_interval
try:
sings = S.EmptySet
for atom in f.atoms(Pow):
predicate, denom = _has_rational_power(atom, symbol)
if predicate and denom == 2:
sings = solveset(1/f, symbol, domain)
break
else:
sings = Intersection(solveset(1/f, symbol), domain)
except:
raise NotImplementedError("Methods for determining the continuous domains"
" of this function has not been developed.")
return domain - sings
示例11: _contains
def _contains(self, other):
from sympy.matrices import Matrix
from sympy.solvers.solveset import solveset, linsolve
from sympy.utilities.iterables import iterable, cartes
L = self.lamda
if self._is_multivariate():
if not iterable(L.expr):
if iterable(other):
return S.false
return other.as_numer_denom() in self.func(
Lambda(L.variables, L.expr.as_numer_denom()), self.base_set)
if len(L.expr) != len(self.lamda.variables):
raise NotImplementedError(filldedent('''
Dimensions of input and output of Lambda are different.'''))
eqs = [expr - val for val, expr in zip(other, L.expr)]
variables = L.variables
free = set(variables)
if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
solns = list(linsolve([e - val for e, val in
zip(L.expr, other)], variables))
else:
syms = [e.free_symbols & free for e in eqs]
solns = {}
for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
if not s:
if e != v:
return S.false
solns[vars[i]] = [v]
continue
elif len(s) == 1:
sy = s.pop()
sol = solveset(e, sy)
if sol is S.EmptySet:
return S.false
elif isinstance(sol, FiniteSet):
solns[sy] = list(sol)
else:
raise NotImplementedError
else:
raise NotImplementedError
solns = cartes(*[solns[s] for s in variables])
else:
# assume scalar -> scalar mapping
solnsSet = solveset(L.expr - other, L.variables[0])
if solnsSet.is_FiniteSet:
solns = list(solnsSet)
else:
raise NotImplementedError(filldedent('''
Determining whether an ImageSet contains %s has not
been implemented.''' % func_name(other)))
for soln in solns:
try:
if soln in self.base_set:
return S.true
except TypeError:
return self.base_set.contains(soln.evalf())
return S.false
示例12: test_issue_11174
def test_issue_11174():
r, t = symbols('r t')
eq = z**2 + exp(2*x) - sin(y)
soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
assert solveset(eq, x, S.Reals) == soln
eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
soln = Intersection(S.Reals, FiniteSet(s))
assert solveset(eq, x, S.Reals) == soln
示例13: test_invert_real
def test_invert_real():
x = Symbol('x', real=True)
x = Dummy(real=True)
n = Symbol('n')
d = Dummy()
assert solveset(abs(x) - n, x) == solveset(abs(x) - d, x) == EmptySet()
n = Symbol('n', real=True)
assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))
assert invert_real(exp(x) + 3, y, x) == (x, FiniteSet(log(y - 3)))
assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))
assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))
assert invert_real(Abs(x), y, x) == (x, FiniteSet(-y, y))
assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
assert invert_real(2**exp(x), y, x) == (x, FiniteSet(log(log(y)/log(2))))
assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))
raises(ValueError, lambda: invert_real(x, x, x))
raises(ValueError, lambda: invert_real(x**pi, y, x))
raises(ValueError, lambda: invert_real(S.One, y, x))
assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))
assert invert_real(Abs(x**31 + x + 1), y, x) == (x**31 + x,
FiniteSet(-y - 1, y - 1))
assert invert_real(tan(x), y, x) == \
(x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))
assert invert_real(tan(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))
assert invert_real(cot(x), y, x) == \
(x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))
assert invert_real(cot(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))
assert invert_real(tan(tan(x)), y, x) == \
(tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))
x = Symbol('x', positive=True)
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
示例14: test_piecewise
def test_piecewise():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise((x - 3, S(0) <= x - 3), (3 - x, S(0) > x - 3))
y = Symbol("y", positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
f = Piecewise(((x - 2) ** 2, x >= 0), (0, True))
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
assert solveset(Piecewise((x + 1, x > 0), (I, True)) - I, x) == Interval(-oo, 0)
示例15: test_conditonset
def test_conditonset():
assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
ConditionSet(x, True, S.Reals)
assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals) == \
ConditionSet(x, Eq(x*(x + sin(x)) - 1, 0), S.Reals)
assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals) == \
ConditionSet(x, Eq(-x + sin(Abs(x)), 0), Interval(-oo, oo))
assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x) == \
imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)
assert solveset(x + sin(x) > 1, x, domain=S.Reals) == \
ConditionSet(x, x + sin(x) > 1, S.Reals)