本文整理汇总了Python中sympy.solvers.solveset._has_rational_power函数的典型用法代码示例。如果您正苦于以下问题:Python _has_rational_power函数的具体用法?Python _has_rational_power怎么用?Python _has_rational_power使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了_has_rational_power函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: continuous_domain
def continuous_domain(f, symbol, domain):
"""
Returns the intervals in the given domain for which the function is continuous.
This method is limited by the ability to determine the various
singularities and discontinuities of the given function.
Examples
========
>>> from sympy import Symbol, S, tan, log, pi, sqrt
>>> from sympy.sets import Interval
>>> from sympy.calculus.util import continuous_domain
>>> x = Symbol('x')
>>> continuous_domain(1/x, x, S.Reals)
(-oo, 0) U (0, oo)
>>> continuous_domain(tan(x), x, Interval(0, pi))
[0, pi/2) U (pi/2, pi]
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
[2, 5]
>>> continuous_domain(log(2*x - 1), x, S.Reals)
(1/2, oo)
"""
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.solvers.solveset import solveset, _has_rational_power
if domain.is_subset(S.Reals):
constrained_interval = domain
for atom in f.atoms(Pow):
predicate, denom = _has_rational_power(atom, symbol)
constraint = S.EmptySet
if predicate and denom == 2:
constraint = solve_univariate_inequality(atom.base >= 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
for atom in f.atoms(log):
constraint = solve_univariate_inequality(atom.args[0] > 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
domain = constrained_interval
try:
sings = S.EmptySet
for atom in f.atoms(Pow):
predicate, denom = _has_rational_power(atom, symbol)
if predicate and denom == 2:
sings = solveset(1/f, symbol, domain)
break
else:
sings = Intersection(solveset(1/f, symbol), domain)
except:
raise NotImplementedError("Methods for determining the continuous domains"
" of this function has not been developed.")
return domain - sings
示例2: test__has_rational_power
def test__has_rational_power():
from sympy.solvers.solveset import _has_rational_power
assert _has_rational_power(sqrt(2), x)[0] is False
assert _has_rational_power(x*sqrt(2), x)[0] is False
assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)
assert _has_rational_power(sqrt(2)*x**(S(1)/3), x) == (True, 3)
assert _has_rational_power(sqrt(x)*x**(S(1)/3), x) == (True, 6)
示例3: test_improve_coverage
def test_improve_coverage():
from sympy.solvers.solveset import _has_rational_power
x = Symbol('x', real=True)
y = exp(x+1/x**2)
raises(NotImplementedError, lambda: solveset(y**2+y, x))
assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
示例4: test_improve_coverage
def test_improve_coverage():
from sympy.solvers.solveset import _has_rational_power
x = Symbol('x')
y = exp(x+1/x**2)
solution = solveset(y**2+y, x, S.Reals)
unsolved_object = ConditionSet(x, Eq((exp((x**3 + 1)/x**2) + 1)*exp((x**3 + 1)/x**2), 0), S.Reals)
assert solution == unsolved_object
assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
示例5: continuous_domain
def continuous_domain(f, symbol, domain):
"""
Returns the intervals in the given domain for which the function
is continuous.
This method is limited by the ability to determine the various
singularities and discontinuities of the given function.
Parameters
==========
f : Expr
The concerned function.
symbol : Symbol
The variable for which the intervals are to be determined.
domain : Interval
The domain over which the continuity of the symbol has to be checked.
Examples
========
>>> from sympy import Symbol, S, tan, log, pi, sqrt
>>> from sympy.sets import Interval
>>> from sympy.calculus.util import continuous_domain
>>> x = Symbol('x')
>>> continuous_domain(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> continuous_domain(tan(x), x, Interval(0, pi))
Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi))
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
Interval(2, 5)
>>> continuous_domain(log(2*x - 1), x, S.Reals)
Interval.open(1/2, oo)
Returns
=======
Interval
Union of all intervals where the function is continuous.
Raises
======
NotImplementedError
If the method to determine continuity of such a function
has not yet been developed.
"""
from sympy.solvers.inequalities import solve_univariate_inequality
from sympy.solvers.solveset import solveset, _has_rational_power
if domain.is_subset(S.Reals):
constrained_interval = domain
for atom in f.atoms(Pow):
predicate, denomin = _has_rational_power(atom, symbol)
constraint = S.EmptySet
if predicate and denomin == 2:
constraint = solve_univariate_inequality(atom.base >= 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
for atom in f.atoms(log):
constraint = solve_univariate_inequality(atom.args[0] > 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
domain = constrained_interval
try:
sings = S.EmptySet
if f.has(Abs):
sings = solveset(1/f, symbol, domain) + \
solveset(denom(together(f)), symbol, domain)
else:
for atom in f.atoms(Pow):
predicate, denomin = _has_rational_power(atom, symbol)
if predicate and denomin == 2:
sings = solveset(1/f, symbol, domain) +\
solveset(denom(together(f)), symbol, domain)
break
else:
sings = Intersection(solveset(1/f, symbol), domain) + \
solveset(denom(together(f)), symbol, domain)
except NotImplementedError:
import sys
raise (NotImplementedError("Methods for determining the continuous domains"
" of this function have not been developed."),
None,
sys.exc_info()[2])
return domain - sings