当前位置: 首页>>代码示例>>Python>>正文


Python inequalities.reduce_rational_inequalities函数代码示例

本文整理汇总了Python中sympy.solvers.inequalities.reduce_rational_inequalities函数的典型用法代码示例。如果您正苦于以下问题:Python reduce_rational_inequalities函数的具体用法?Python reduce_rational_inequalities怎么用?Python reduce_rational_inequalities使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了reduce_rational_inequalities函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_reduce_rational_inequalities_real_relational

def test_reduce_rational_inequalities_real_relational():
    assert reduce_rational_inequalities([], x) == False
    assert reduce_rational_inequalities(
        [[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
        Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))

    assert reduce_rational_inequalities(
        [[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
        relational=False) == \
        Union(Interval.open(-5, 2), Interval.open(2, 3))

    assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
        relational=False) == \
        Interval.Ropen(-1, 5)

    assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
        relational=False) == \
        Union(Interval.open(-3, -1), Interval.open(1, oo))

    assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
        relational=False) == \
        Union(Interval.open(-4, 1), Interval.open(1, 4))

    assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
        relational=False) == \
        Union(Interval.open(-oo, -4), Interval.Ropen(S(3)/2, oo))

    assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
        relational=False) == \
        Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))

    # issue sympy/sympy#10237
    assert reduce_rational_inequalities(
        [[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
开发者ID:richardotis,项目名称:sympy,代码行数:34,代码来源:test_inequalities.py

示例2: test_reduce_rational_inequalities_real_relational

def test_reduce_rational_inequalities_real_relational():
    def OpenInterval(a, b):
        return Interval(a, b, True, True)
    def LeftOpenInterval(a, b):
        return Interval(a, b, True, False)
    def RightOpenInterval(a, b):
        return Interval(a, b, False, True)

    with assuming(Q.real(x)):
        assert reduce_rational_inequalities([[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
            Union(OpenInterval(-oo, -4), Interval(-2, -1), OpenInterval(4, oo))

        assert reduce_rational_inequalities([[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x, relational=False) == \
            Union(OpenInterval(-5, 2), OpenInterval(2, 3))

        assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x, assume=Q.real(x), relational=False) == \
            RightOpenInterval(-1, 5)

        assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x, assume=Q.real(x), relational=False) == \
            Union(OpenInterval(-3, -1), OpenInterval(1, oo))

        assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x, assume=Q.real(x), relational=False) == \
            Union(OpenInterval(-4, 1), OpenInterval(1, 4))

        assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x, assume=Q.real(x), relational=False) == \
            Union(OpenInterval(-oo, -4), RightOpenInterval(S(3)/2, oo))

        assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x, assume=Q.real(x), relational=False) == \
            Union(LeftOpenInterval(-oo, -2), LeftOpenInterval(0, 4))
开发者ID:AALEKH,项目名称:sympy,代码行数:29,代码来源:test_inequalities.py

示例3: _has_conflict

def _has_conflict(rd1, rd2, offset):
    """
    :param rd1: rectangular domain from Stencil1 (1D) <- (low, high, stride) (written domain)
    :param rd2: rectangular domain from Stencil2 (1D) <- (low, high, stride) (read domain)
    :param offset_vector: Offset from the center (relative to rd2), 1D projections
    :return: Whether OV from rectangular domain 2 reads from rectangular domain 1
    """

    n1 = sympy.Symbol("n1")
    n2 = sympy.Symbol("n2")

    # Diophantine equations:
    # offset(iterationspace1) + n1 * stride(iteration_space1) <- write vectors
    diophantine_eq1 = rd1[0] + n1 * rd1[2]
    # offset(iterationspace2) + n2 * stride(iteration_space2) + offset_vector  <- Read vectors
    diophantine_eq2 = rd2[0] + n2 * rd2[2] + offset
    # Since sympy solves eq = 0, we want dio_eq1 - dio_eq2 = 0.
    eqn = diophantine_eq1 - diophantine_eq2
    parameter = sympy.Symbol("t", integer=True)
    sat_param = sympy.Symbol("t_0", integer=True)
    if not eqn.free_symbols:
        return eqn == 0
    solutions = dio.diophantine(eqn, parameter)  # default parameter is "t"
    # print("Sols:", solutions)
    for sol in solutions:
        if len(eqn.free_symbols) != 2:
            if n1 in eqn.free_symbols:
                parametric_n1 = sol[0]
                parametric_n2 = 0
            else:
                parametric_n1 = 0
                parametric_n2 = sol[0]
        else:
            (parametric_n1, parametric_n2) = sol
        # Solutions is a set of tuples, each containing either a number or parametric expression
        # which give conditions on satisfiability.

        # are these satisfiable on the original bounds?
        # substitute the parametric forms in
        substituted_1 = diophantine_eq1.subs({n1: parametric_n1})
        substituted_2 = (
            rd2[0] + parametric_n2 * rd2[2]
        )  # we ditch the offset because it's irrelevant since the bounds are based on the center of the stencil

        # print(substituted_1, "\t", substituted_2)
        # print(rd1[0], rd1[1], rd2[0], rd2[1])
        # now do they satisfy the bounds?
        satisfactory_interval = ineq.reduce_rational_inequalities(
            [[rd1[0] <= substituted_1, rd1[1] > substituted_1, rd2[0] <= substituted_2, rd2[1] > substituted_2]],
            sat_param,
            relational=False,
        )
        # print(satisfactory_interval)

        if _contains_integer(satisfactory_interval):
            return True
    return False
开发者ID:ucb-sejits,项目名称:snowflake,代码行数:57,代码来源:analytics.py

示例4: test_reduce_poly_inequalities_real_interval

def test_reduce_poly_inequalities_real_interval():
    assert reduce_rational_inequalities(
        [[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
    assert reduce_rational_inequalities(
        [[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
    assert reduce_rational_inequalities(
        [[Ge(x**2, 0)]], x, relational=False) == \
        S.Reals if x.is_real else Interval(-oo, oo)
    assert reduce_rational_inequalities(
        [[Gt(x**2, 0)]], x, relational=False) == \
        FiniteSet(0).complement(S.Reals)
    assert reduce_rational_inequalities(
        [[Ne(x**2, 0)]], x, relational=False) == \
        FiniteSet(0).complement(S.Reals)

    assert reduce_rational_inequalities(
        [[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
    assert reduce_rational_inequalities(
        [[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
    assert reduce_rational_inequalities(
        [[Ge(x**2, 1)]], x, relational=False) == \
        Union(Interval(-oo, -1), Interval(1, oo))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 1)]], x, relational=False) == \
        Interval(-1, 1).complement(S.Reals)
    assert reduce_rational_inequalities(
        [[Ne(x**2, 1)]], x, relational=False) == \
        FiniteSet(-1, 1).complement(S.Reals)
    assert reduce_rational_inequalities([[Eq(
        x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
    assert reduce_rational_inequalities(
        [[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
    assert reduce_rational_inequalities([[Lt(
        x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
    assert reduce_rational_inequalities(
        [[Ge(x**2, 1.0)]], x, relational=False) == \
        Union(Interval(-inf, -1.0), Interval(1.0, inf))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 1.0)]], x, relational=False) == \
        Union(Interval(-inf, -1.0, right_open=True),
        Interval(1.0, inf, left_open=True))
    assert reduce_rational_inequalities([[Ne(
        x**2, 1.0)]], x, relational=False) == \
        FiniteSet(-1.0, 1.0).complement(S.Reals)

    s = sqrt(2)

    assert reduce_rational_inequalities([[Lt(
        x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
    assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
        x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
    assert reduce_rational_inequalities(
        [[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
    assert reduce_rational_inequalities(
        [[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
        Interval(1, s, True, True))
开发者ID:richardotis,项目名称:sympy,代码行数:71,代码来源:test_inequalities.py

示例5: test_reduce_poly_inequalities_complex_relational

def test_reduce_poly_inequalities_complex_relational():
    assert reduce_rational_inequalities(
        [[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
    assert reduce_rational_inequalities(
        [[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 0)]], x, relational=True) == False
    assert reduce_rational_inequalities(
        [[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 0)]], x, relational=True) == \
        And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
    assert reduce_rational_inequalities(
        [[Ne(x**2, 0)]], x, relational=True) == \
        And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))

    for one in (S(1), S(1.0)):
        inf = one*oo
        assert reduce_rational_inequalities(
            [[Eq(x**2, one)]], x, relational=True) == \
            Or(Eq(x, -one), Eq(x, one))
        assert reduce_rational_inequalities(
            [[Le(x**2, one)]], x, relational=True) == \
            And(And(Le(-one, x), Le(x, one)))
        assert reduce_rational_inequalities(
            [[Lt(x**2, one)]], x, relational=True) == \
            And(And(Lt(-one, x), Lt(x, one)))
        assert reduce_rational_inequalities(
            [[Ge(x**2, one)]], x, relational=True) == \
            And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
        assert reduce_rational_inequalities(
            [[Gt(x**2, one)]], x, relational=True) == \
            And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
        assert reduce_rational_inequalities(
            [[Ne(x**2, one)]], x, relational=True) == \
            Or(And(Lt(-inf, x), Lt(x, -one)),
               And(Lt(-one, x), Lt(x, one)),
               And(Lt(one, x), Lt(x, inf)))
开发者ID:richardotis,项目名称:sympy,代码行数:38,代码来源:test_inequalities.py

示例6: _reduce_inequalities

def _reduce_inequalities(conditions, var, **kwargs):
    try:
        return reduce_rational_inequalities(conditions, var, **kwargs)
    except PolynomialError:
        raise ValueError("Reduction of condition failed %s\n" % conditions[0])
开发者ID:A-turing-machine,项目名称:sympy,代码行数:5,代码来源:crv.py

示例7: test_reduce_poly_inequalities_real_relational

def test_reduce_poly_inequalities_real_relational():
    with assuming(Q.real(x), Q.real(y)):
        assert reduce_rational_inequalities(
            [[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
        assert reduce_rational_inequalities(
            [[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
        assert reduce_rational_inequalities(
            [[Lt(x**2, 0)]], x, relational=True) is False
        assert reduce_rational_inequalities(
            [[Ge(x**2, 0)]], x, relational=True) is True
        assert reduce_rational_inequalities(
            [[Gt(x**2, 0)]], x, relational=True) == Or(Lt(x, 0), Gt(x, 0))
        assert reduce_rational_inequalities(
            [[Ne(x**2, 0)]], x, relational=True) == Or(Lt(x, 0), Gt(x, 0))

        assert reduce_rational_inequalities(
            [[Eq(x**2, 1)]], x, relational=True) == Or(Eq(x, -1), Eq(x, 1))
        assert reduce_rational_inequalities(
            [[Le(x**2, 1)]], x, relational=True) == And(Le(-1, x), Le(x, 1))
        assert reduce_rational_inequalities(
            [[Lt(x**2, 1)]], x, relational=True) == And(Lt(-1, x), Lt(x, 1))
        assert reduce_rational_inequalities(
            [[Ge(x**2, 1)]], x, relational=True) == Or(Le(x, -1), Ge(x, 1))
        assert reduce_rational_inequalities(
            [[Gt(x**2, 1)]], x, relational=True) == Or(Lt(x, -1), Gt(x, 1))
        assert reduce_rational_inequalities([[Ne(x**2, 1)]], x, relational=True) == Or(
            Lt(x, -1), And(Lt(-1, x), Lt(x, 1)), Gt(x, 1))

        assert reduce_rational_inequalities(
            [[Le(x**2, 1.0)]], x, relational=True) == And(Le(-1.0, x), Le(x, 1.0))
        assert reduce_rational_inequalities(
            [[Lt(x**2, 1.0)]], x, relational=True) == And(Lt(-1.0, x), Lt(x, 1.0))
        assert reduce_rational_inequalities(
            [[Ge(x**2, 1.0)]], x, relational=True) == Or(Le(x, -1.0), Ge(x, 1.0))
        assert reduce_rational_inequalities(
            [[Gt(x**2, 1.0)]], x, relational=True) == Or(Lt(x, -1.0), Gt(x, 1.0))
        assert reduce_rational_inequalities([[Ne(x**2, 1.0)]], x, relational=True) == \
            Or(Lt(x, -1.0), And(Lt(-1.0, x), Lt(x, 1.0)), Gt(x, 1.0))
开发者ID:AALEKH,项目名称:sympy,代码行数:38,代码来源:test_inequalities.py

示例8: test_reduce_poly_inequalities_complex_relational

def test_reduce_poly_inequalities_complex_relational():
    cond = Eq(im(x), 0)

    assert reduce_rational_inequalities(
        [[Eq(x**2, 0)]], x, relational=True) == And(Eq(re(x), 0), cond)
    assert reduce_rational_inequalities(
        [[Le(x**2, 0)]], x, relational=True) == And(Eq(re(x), 0), cond)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 0)]], x, relational=True) == False
    assert reduce_rational_inequalities(
        [[Ge(x**2, 0)]], x, relational=True) == cond
    assert reduce_rational_inequalities([[Gt(x**2, 0)]], x, relational=True) == \
        And(Or(Lt(re(x), 0), Gt(re(x), 0)), cond)
    assert reduce_rational_inequalities([[Ne(x**2, 0)]], x, relational=True) == \
        And(Or(Lt(re(x), 0), Gt(re(x), 0)), cond)

    assert reduce_rational_inequalities([[Eq(x**2, 1)]], x, relational=True) == \
        And(Or(Eq(re(x), -1), Eq(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Le(x**2, 1)]], x, relational=True) == \
        And(And(Le(-1, re(x)), Le(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Lt(x**2, 1)]], x, relational=True) == \
        And(And(Lt(-1, re(x)), Lt(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Ge(x**2, 1)]], x, relational=True) == \
        And(Or(Le(re(x), -1), Ge(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Gt(x**2, 1)]], x, relational=True) == \
        And(Or(Lt(re(x), -1), Gt(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Ne(x**2, 1)]], x, relational=True) == \
        And(Or(Lt(re(x), -1), And(Lt(-1, re(x)), Lt(re(x), 1)), Gt(re(x), 1)), cond)

    assert reduce_rational_inequalities([[Le(x**2, 1.0)]], x, relational=True) == \
        And(And(Le(-1.0, re(x)), Le(re(x), 1.0)), cond)
    assert reduce_rational_inequalities([[Lt(x**2, 1.0)]], x, relational=True) == \
        And(And(Lt(-1.0, re(x)), Lt(re(x), 1.0)), cond)
    assert reduce_rational_inequalities([[Ge(x**2, 1.0)]], x, relational=True) == \
        And(Or(Le(re(x), -1.0), Ge(re(x), 1.0)), cond)
    assert reduce_rational_inequalities([[Gt(x**2, 1.0)]], x, relational=True) == \
        And(Or(Lt(re(x), -1.0), Gt(re(x), 1.0)), cond)
    assert reduce_rational_inequalities([[Ne(x**2, 1.0)]], x, relational=True) == \
        And(Or(Lt(re(x), -1.0), And(Lt(-1.0, re(x)), Lt(re(x), 1.0)), Gt(re(x), 1.0)), cond)
开发者ID:AALEKH,项目名称:sympy,代码行数:39,代码来源:test_inequalities.py

示例9: test_reduce_poly_inequalities_real_relational

def test_reduce_poly_inequalities_real_relational():
    with assuming(Q.real(x), Q.real(y)):
        assert reduce_rational_inequalities(
            [[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
        assert reduce_rational_inequalities(
            [[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
        assert reduce_rational_inequalities(
            [[Lt(x**2, 0)]], x, relational=True) == False
        assert reduce_rational_inequalities(
            [[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
        assert reduce_rational_inequalities(
            [[Gt(x**2, 0)]], x, relational=True) == Or(And(Lt(-oo, x), Lt(x, 0)), And(Lt(0, x), Lt(x, oo)))
        assert reduce_rational_inequalities(
            [[Ne(x**2, 0)]], x, relational=True) == Or(And(Lt(-oo, x), Lt(x, 0)), And(Lt(0, x), Lt(x, oo)))

        assert reduce_rational_inequalities(
            [[Eq(x**2, 1)]], x, relational=True) == Or(Eq(x, -1), Eq(x, 1))
        assert reduce_rational_inequalities(
            [[Le(x**2, 1)]], x, relational=True) == And(Le(-1, x), Le(x, 1))
        assert reduce_rational_inequalities(
            [[Lt(x**2, 1)]], x, relational=True) == And(Lt(-1, x), Lt(x, 1))
        assert reduce_rational_inequalities(
            [[Ge(x**2, 1)]], x, relational=True) == Or(And(Le(1, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x)))
        assert reduce_rational_inequalities(
            [[Gt(x**2, 1)]], x, relational=True) == Or(And(Lt(1, x), Lt(x, oo)), And(Lt(x, -1), Lt(-oo, x)))
        assert reduce_rational_inequalities([[Ne(x**2, 1)]], x, relational=True) == Or(
            And(Lt(-oo, x), Lt(x, -1)), And(Lt(-1, x), Lt(x, 1)), And(Lt(1, x), Lt(x, oo)))

        assert reduce_rational_inequalities(
            [[Le(x**2, 1.0)]], x, relational=True) == And(Le(-1.0, x), Le(x, 1.0))
        assert reduce_rational_inequalities(
            [[Lt(x**2, 1.0)]], x, relational=True) == And(Lt(-1.0, x), Lt(x, 1.0))
        assert reduce_rational_inequalities(
            [[Ge(x**2, 1.0)]], x, relational=True) == Or(And(Lt(Float('-inf'), x), Le(x, -1.0)),
                                                         And(Le(1.0, x), Lt(x, Float('+inf'))))
        assert reduce_rational_inequalities(
            [[Gt(x**2, 1.0)]], x, relational=True) == Or(And(Lt(Float('-inf'), x), Lt(x, -1.0)),
                                                         And(Lt(1.0, x), Lt(x, Float('+inf'))))
        assert reduce_rational_inequalities([[Ne(x**2, 1.0)]], x, relational=True) == \
            Or(And(Lt(-1.0, x), Lt(x, 1.0)), And(Lt(Float('-inf'), x), Lt(x, -1.0)),
               And(Lt(1.0, x), Lt(x, Float('+inf'))))
开发者ID:aiwku1277,项目名称:sympy,代码行数:41,代码来源:test_inequalities.py

示例10: test_reduce_poly_inequalities_complex_relational

def test_reduce_poly_inequalities_complex_relational():
    cond = Eq(im(x), 0)

    assert reduce_rational_inequalities(
        [[Eq(x**2, 0)]], x, relational=True) == And(Eq(re(x), 0), cond)
    assert reduce_rational_inequalities(
        [[Le(x**2, 0)]], x, relational=True) == And(Eq(re(x), 0), cond)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 0)]], x, relational=True) == False
    assert reduce_rational_inequalities(
        [[Ge(x**2, 0)]], x, relational=True) == And(cond, Lt(-oo, re(x)), Lt(re(x), oo))
    assert reduce_rational_inequalities([[Gt(x**2, 0)]], x, relational=True) == \
        And(cond, Or(And(Lt(-oo, re(x)), Lt(re(x), 0)), And(Lt(0, re(x)), Lt(re(x), oo))))
    assert reduce_rational_inequalities([[Ne(x**2, 0)]], x, relational=True) == \
        And(cond, Or(And(Lt(-oo, re(x)), Lt(re(x), 0)), And(Lt(0, re(x)), Lt(re(x), oo))))

    assert reduce_rational_inequalities([[Eq(x**2, 1)]], x, relational=True) == \
        And(Or(Eq(re(x), -1), Eq(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Le(x**2, 1)]], x, relational=True) == \
        And(And(Le(-1, re(x)), Le(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Lt(x**2, 1)]], x, relational=True) == \
        And(And(Lt(-1, re(x)), Lt(re(x), 1)), cond)
    assert reduce_rational_inequalities([[Ge(x**2, 1)]], x, relational=True) == \
        And(cond, Or(And(Le(1, re(x)), Lt(re(x), oo)), And(Le(re(x), -1), Lt(-oo, re(x)))))
    assert reduce_rational_inequalities([[Gt(x**2, 1)]], x, relational=True) == \
        And(cond, Or(And(Lt(-oo, re(x)), Lt(re(x), -1)), And(Lt(1, re(x)), Lt(re(x), oo))))
    assert reduce_rational_inequalities([[Ne(x**2, 1)]], x, relational=True) == \
        And(cond, Or(And(Lt(-oo, re(x)), Lt(re(x), -1)),
                     And(Lt(-1, re(x)), Lt(re(x), 1)), And(Lt(1, re(x)), Lt(re(x), oo))))

    assert reduce_rational_inequalities([[Le(x**2, 1.0)]], x, relational=True) == \
        And(And(Le(-1.0, re(x)), Le(re(x), 1.0)), cond)
    assert reduce_rational_inequalities([[Lt(x**2, 1.0)]], x, relational=True) == \
        And(And(Lt(-1.0, re(x)), Lt(re(x), 1.0)), cond)
    assert reduce_rational_inequalities([[Ge(x**2, 1.0)]], x, relational=True) == \
        And(cond, Or(And(Le(1.0, re(x)), re(x) < Float('+inf')),
                     And(Le(re(x), -1.0), Float('-inf') < re(x))))
    assert reduce_rational_inequalities([[Gt(x**2, 1.0)]], x, relational=True) == \
        And(cond, Or(And(Float('-inf') < re(x), re(x) < -1.0),
                     And(Lt(1.0, re(x)), re(x) < Float('+inf'))))
    assert reduce_rational_inequalities([[Ne(x**2, 1.0)]], x, relational=True) == \
        And(cond, Or(And(Float('-inf') < re(x), Lt(re(x), -1.0)),
                     And(Lt(-1.0, re(x)), re(x) < 1.0), And(Lt(1.0, re(x)), re(x) < Float('+inf'))))
开发者ID:aiwku1277,项目名称:sympy,代码行数:43,代码来源:test_inequalities.py


注:本文中的sympy.solvers.inequalities.reduce_rational_inequalities函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。