本文整理汇总了Python中sympy.polys.domains.ZZ类的典型用法代码示例。如果您正苦于以下问题:Python ZZ类的具体用法?Python ZZ怎么用?Python ZZ使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ZZ类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dup_cancel
def test_dup_cancel():
f = ZZ.map([2, 0, -2])
g = ZZ.map([1, -2, 1])
p = [ZZ(2), ZZ(2)]
q = [ZZ(1), -ZZ(1)]
assert dup_cancel(f, g, ZZ) == (p, q)
assert dup_cancel(f, g, ZZ, include=False) == (ZZ(1), ZZ(1), p, q)
f = [-ZZ(1), -ZZ(2)]
g = [ ZZ(3), -ZZ(4)]
F = [ ZZ(1), ZZ(2)]
G = [-ZZ(3), ZZ(4)]
assert dup_cancel(f, g, ZZ) == (f, g)
assert dup_cancel(F, G, ZZ) == (f, g)
assert dup_cancel([], [], ZZ) == ([], [])
assert dup_cancel([], [], ZZ, include=False) == (ZZ(1), ZZ(1), [], [])
assert dup_cancel([ZZ(1), ZZ(0)], [], ZZ) == ([ZZ(1)], [])
assert dup_cancel(
[ZZ(1), ZZ(0)], [], ZZ, include=False) == (ZZ(1), ZZ(1), [ZZ(1)], [])
assert dup_cancel([], [ZZ(1), ZZ(0)], ZZ) == ([], [ZZ(1)])
assert dup_cancel(
[], [ZZ(1), ZZ(0)], ZZ, include=False) == (ZZ(1), ZZ(1), [], [ZZ(1)])
示例2: test_globalring
def test_globalring():
Qxy = QQ.old_frac_field(x, y)
R = QQ.old_poly_ring(x, y)
X = R.convert(x)
Y = R.convert(y)
assert x in R
assert 1/x not in R
assert 1/(1 + x) not in R
assert Y in R
assert X.ring == R
assert X * (Y**2 + 1) == R.convert(x * (y**2 + 1))
assert X * y == X * Y == R.convert(x * y) == x * Y
assert X + y == X + Y == R.convert(x + y) == x + Y
assert X - y == X - Y == R.convert(x - y) == x - Y
assert X + 1 == R.convert(x + 1)
raises(ExactQuotientFailed, lambda: X/Y)
raises(ExactQuotientFailed, lambda: x/Y)
raises(ExactQuotientFailed, lambda: X/y)
assert X**2 / X == X
assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
assert R.from_FractionField(Qxy.convert(x), Qxy) == X
assert R.from_FractionField(Qxy.convert(x)/y, Qxy) is None
assert R._sdm_to_vector(R._vector_to_sdm([X, Y], R.order), 2) == [X, Y]
示例3: test_Domain_get_ring
def test_Domain_get_ring():
assert ZZ.has_assoc_Ring is True
assert QQ.has_assoc_Ring is True
assert ZZ[x].has_assoc_Ring is True
assert QQ[x].has_assoc_Ring is True
assert ZZ[x, y].has_assoc_Ring is True
assert QQ[x, y].has_assoc_Ring is True
assert ZZ.frac_field(x).has_assoc_Ring is True
assert QQ.frac_field(x).has_assoc_Ring is True
assert ZZ.frac_field(x, y).has_assoc_Ring is True
assert QQ.frac_field(x, y).has_assoc_Ring is True
assert EX.has_assoc_Ring is False
assert RR.has_assoc_Ring is False
assert ALG.has_assoc_Ring is False
assert ZZ.get_ring() == ZZ
assert QQ.get_ring() == ZZ
assert ZZ[x].get_ring() == ZZ[x]
assert QQ[x].get_ring() == QQ[x]
assert ZZ[x, y].get_ring() == ZZ[x, y]
assert QQ[x, y].get_ring() == QQ[x, y]
assert ZZ.frac_field(x).get_ring() == ZZ[x]
assert QQ.frac_field(x).get_ring() == QQ[x]
assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
assert QQ.frac_field(x, y).get_ring() == QQ[x, y]
assert EX.get_ring() == EX
raises(DomainError, lambda: RR.get_ring())
raises(DomainError, lambda: ALG.get_ring())
示例4: test_Domain_get_ring
def test_Domain_get_ring():
assert ZZ.has_assoc_Ring is True
assert QQ.has_assoc_Ring is True
assert ZZ[x].has_assoc_Ring is True
assert QQ[x].has_assoc_Ring is True
assert ZZ[x, y].has_assoc_Ring is True
assert QQ[x, y].has_assoc_Ring is True
assert ZZ.frac_field(x).has_assoc_Ring is True
assert QQ.frac_field(x).has_assoc_Ring is True
assert ZZ.frac_field(x, y).has_assoc_Ring is True
assert QQ.frac_field(x, y).has_assoc_Ring is True
assert EX.has_assoc_Ring is False
assert RR.has_assoc_Ring is False
assert ALG.has_assoc_Ring is False
assert ZZ.get_ring() == ZZ
assert QQ.get_ring() == ZZ
assert ZZ[x].get_ring() == ZZ[x]
assert QQ[x].get_ring() == QQ[x]
assert ZZ[x, y].get_ring() == ZZ[x, y]
assert QQ[x, y].get_ring() == QQ[x, y]
assert ZZ.frac_field(x).get_ring() == ZZ[x]
assert QQ.frac_field(x).get_ring() == QQ[x]
assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
assert QQ.frac_field(x, y).get_ring() == QQ[x, y]
assert EX.get_ring() == EX
assert RR.get_ring() == RR
# XXX: This should also be like RR
raises(DomainError, lambda: ALG.get_ring())
示例5: test_Domain_get_ring
def test_Domain_get_ring():
assert ZZ.has_assoc_Ring == True
assert QQ.has_assoc_Ring == True
assert ZZ[x].has_assoc_Ring == True
assert QQ[x].has_assoc_Ring == True
assert ZZ[x,y].has_assoc_Ring == True
assert QQ[x,y].has_assoc_Ring == True
assert ZZ.frac_field(x).has_assoc_Ring == True
assert QQ.frac_field(x).has_assoc_Ring == True
assert ZZ.frac_field(x,y).has_assoc_Ring == True
assert QQ.frac_field(x,y).has_assoc_Ring == True
assert EX.has_assoc_Ring == False
assert RR.has_assoc_Ring == False
assert ALG.has_assoc_Ring == False
assert ZZ.get_ring() == ZZ
assert QQ.get_ring() == ZZ
assert ZZ[x].get_ring() == ZZ[x]
assert QQ[x].get_ring() == QQ[x]
assert ZZ[x,y].get_ring() == ZZ[x,y]
assert QQ[x,y].get_ring() == QQ[x,y]
assert ZZ.frac_field(x).get_ring() == ZZ[x]
assert QQ.frac_field(x).get_ring() == QQ[x]
assert ZZ.frac_field(x,y).get_ring() == ZZ[x,y]
assert QQ.frac_field(x,y).get_ring() == QQ[x,y]
raises(DomainError, "EX.get_ring()")
raises(DomainError, "RR.get_ring()")
raises(DomainError, "ALG.get_ring()")
示例6: test_DMP_to_dict
def test_DMP_to_dict():
f = DMP([[3],[],[2],[],[8]], ZZ)
assert f.to_dict() == \
{(4, 0): 3, (2, 0): 2, (0, 0): 8}
assert f.to_sympy_dict() == \
{(4, 0): ZZ.to_sympy(3), (2, 0): ZZ.to_sympy(2), (0, 0): ZZ.to_sympy(8)}
示例7: test_localring
def test_localring():
Qxy = QQ.old_frac_field(x, y)
R = QQ.old_poly_ring(x, y, order="ilex")
X = R.convert(x)
Y = R.convert(y)
assert x in R
assert 1/x not in R
assert 1/(1 + x) in R
assert Y in R
assert X.ring == R
assert X*(Y**2 + 1)/(1 + X) == R.convert(x*(y**2 + 1)/(1 + x))
assert X*y == X*Y
raises(ExactQuotientFailed, lambda: X/Y)
raises(ExactQuotientFailed, lambda: x/Y)
raises(ExactQuotientFailed, lambda: X/y)
assert X + y == X + Y == R.convert(x + y) == x + Y
assert X - y == X - Y == R.convert(x - y) == x - Y
assert X + 1 == R.convert(x + 1)
assert X**2 / X == X
assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
assert R.from_FractionField(Qxy.convert(x), Qxy) == X
raises(CoercionFailed, lambda: R.from_FractionField(Qxy.convert(x)/y, Qxy))
raises(ExactQuotientFailed, lambda: X/Y)
raises(NotReversible, lambda: X.invert())
assert R._sdm_to_vector(
R._vector_to_sdm([X/(X + 1), Y/(1 + X*Y)], R.order), 2) == \
[X*(1 + X*Y), Y*(1 + X)]
示例8: test_gf_monic
def test_gf_monic():
assert gf_monic(ZZ.map([]), 11, ZZ) == (0, [])
assert gf_monic(ZZ.map([1]), 11, ZZ) == (1, [1])
assert gf_monic(ZZ.map([2]), 11, ZZ) == (2, [1])
assert gf_monic(ZZ.map([1, 2, 3, 4]), 11, ZZ) == (1, [1, 2, 3, 4])
assert gf_monic(ZZ.map([2, 3, 4, 5]), 11, ZZ) == (2, [1, 7, 2, 8])
示例9: test_Domain_map
def test_Domain_map():
seq = ZZ.map([1, 2, 3, 4])
assert all([ ZZ.of_type(elt) for elt in seq ])
seq = ZZ.map([[1, 2, 3, 4]])
assert all([ ZZ.of_type(elt) for elt in seq[0] ]) and len(seq) == 1
示例10: test_dup_count_complex_roots_1
def test_dup_count_complex_roots_1():
# z-1
assert dup_count_complex_roots(ZZ.map([1, -1]), ZZ, a, b) == 1
assert dup_count_complex_roots(ZZ.map([1, -1]), ZZ, c, d) == 1
# z+1
assert dup_count_complex_roots(ZZ.map([1, 1]), ZZ, a, b) == 1
assert dup_count_complex_roots(ZZ.map([1, 1]), ZZ, c, d) == 0
示例11: test_Domain_convert
def test_Domain_convert():
assert QQ.convert(10e-52) == QQ(
1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576
)
R, x = ring("x", ZZ)
assert ZZ.convert(x - x) == 0
assert ZZ.convert(x - x, R.to_domain()) == 0
示例12: test_gf_frobenius_map
def test_gf_frobenius_map():
f = ZZ.map([2, 0, 1, 0, 2, 2, 0, 2, 2, 2])
g = ZZ.map([1,1,0,2,0,1,0,2,0,1])
p = 3
n = 4
b = gf_frobenius_monomial_base(g, p, ZZ)
h = gf_frobenius_map(f, g, b, p, ZZ)
h1 = gf_pow_mod(f, p, g, p, ZZ)
assert h == h1
示例13: test_dmp_cancel
def test_dmp_cancel():
f = ZZ.map([[2], [0], [-2]])
g = ZZ.map([[1], [-2], [1]])
p = [[ZZ(2)], [ZZ(2)]]
q = [[ZZ(1)], [-ZZ(1)]]
assert dmp_cancel(f, g, 1, ZZ) == (p, q)
assert dmp_cancel(f, g, 1, ZZ, multout=False) == (ZZ(1), ZZ(1), p, q)
示例14: test_dup_primitive_prs
def test_dup_primitive_prs():
f = ZZ.map([1, 0, 1, 0, -3, -3, 8, 2, -5])
g = ZZ.map([3, 0, 5, 0, -4, -9, 21])
assert dup_primitive_prs(f, g, ZZ) == [f, g,
[-ZZ(5), ZZ(0), ZZ(1), ZZ(0), -ZZ(3)],
[ZZ(13), ZZ(25), -ZZ(49)],
[ZZ(4663), -ZZ(6150)],
[ZZ(1)]]
示例15: test_dup_lcm
def test_dup_lcm():
assert dup_lcm([2], [6], ZZ) == [6]
assert dup_lcm([2, 0, 0, 0], [6, 0], ZZ) == [6, 0, 0, 0]
assert dup_lcm([2, 0, 0, 0], [3, 0], ZZ) == [6, 0, 0, 0]
assert dup_lcm(ZZ.map([1, 1, 0]), ZZ.map([1, 0]), ZZ) == [1, 1, 0]
assert dup_lcm(ZZ.map([1, 1, 0]), ZZ.map([2, 0]), ZZ) == [2, 2, 0]
assert dup_lcm(ZZ.map([1, 2, 0]), ZZ.map([1, 0]), ZZ) == [1, 2, 0]
assert dup_lcm(ZZ.map([2, 1, 0]), ZZ.map([1, 0]), ZZ) == [2, 1, 0]
assert dup_lcm(ZZ.map([2, 1, 0]), ZZ.map([2, 0]), ZZ) == [4, 2, 0]