本文整理汇总了Python中sympy.polys.domains.RR.frac_field方法的典型用法代码示例。如果您正苦于以下问题:Python RR.frac_field方法的具体用法?Python RR.frac_field怎么用?Python RR.frac_field使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.polys.domains.RR
的用法示例。
在下文中一共展示了RR.frac_field方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_construct_domain
# 需要导入模块: from sympy.polys.domains import RR [as 别名]
# 或者: from sympy.polys.domains.RR import frac_field [as 别名]
def test_construct_domain():
assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain(
[1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain(
[S(1), S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S(1)/2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
assert construct_domain(
[3.14, 1, S(1)/2]) == (RR, [RR(3.14), RR(1.0), RR(0.5)])
assert construct_domain(
[3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain(
[3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain(
[1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])
alg = QQ.algebraic_field(sqrt(2))
assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \
(alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))])
alg = QQ.algebraic_field(sqrt(2) + sqrt(3))
assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
(alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])
dom = ZZ[x]
assert construct_domain([2*x, 3]) == \
(dom, [dom.convert(2*x), dom.convert(3)])
dom = ZZ[x, y]
assert construct_domain([2*x, 3*y]) == \
(dom, [dom.convert(2*x), dom.convert(3*y)])
dom = QQ[x]
assert construct_domain([x/2, 3]) == \
(dom, [dom.convert(x/2), dom.convert(3)])
dom = QQ[x, y]
assert construct_domain([x/2, 3*y]) == \
(dom, [dom.convert(x/2), dom.convert(3*y)])
dom = RR[x]
assert construct_domain([x/2, 3.5]) == \
(dom, [dom.convert(x/2), dom.convert(3.5)])
dom = RR[x, y]
assert construct_domain([x/2, 3.5*y]) == \
(dom, [dom.convert(x/2), dom.convert(3.5*y)])
dom = ZZ.frac_field(x)
assert construct_domain([2/x, 3]) == \
(dom, [dom.convert(2/x), dom.convert(3)])
dom = ZZ.frac_field(x, y)
assert construct_domain([2/x, 3*y]) == \
(dom, [dom.convert(2/x), dom.convert(3*y)])
dom = RR.frac_field(x)
assert construct_domain([2/x, 3.5]) == \
(dom, [dom.convert(2/x), dom.convert(3.5)])
dom = RR.frac_field(x, y)
assert construct_domain([2/x, 3.5*y]) == \
(dom, [dom.convert(2/x), dom.convert(3.5*y)])
assert construct_domain(2) == (ZZ, ZZ(2))
assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
示例2: test_Domain_unify
# 需要导入模块: from sympy.polys.domains import RR [as 别名]
# 或者: from sympy.polys.domains.RR import frac_field [as 别名]
def test_Domain_unify():
F3 = GF(3)
assert unify(F3, F3) == F3
assert unify(F3, ZZ) == ZZ
assert unify(F3, QQ) == QQ
assert unify(F3, ALG) == ALG
assert unify(F3, RR) == RR
assert unify(F3, CC) == CC
assert unify(F3, ZZ[x]) == ZZ[x]
assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(F3, EX) == EX
assert unify(ZZ, F3) == ZZ
assert unify(ZZ, ZZ) == ZZ
assert unify(ZZ, QQ) == QQ
assert unify(ZZ, ALG) == ALG
assert unify(ZZ, RR) == RR
assert unify(ZZ, CC) == CC
assert unify(ZZ, ZZ[x]) == ZZ[x]
assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ, EX) == EX
assert unify(QQ, F3) == QQ
assert unify(QQ, ZZ) == QQ
assert unify(QQ, QQ) == QQ
assert unify(QQ, ALG) == ALG
assert unify(QQ, RR) == RR
assert unify(QQ, CC) == CC
assert unify(QQ, ZZ[x]) == QQ[x]
assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
assert unify(QQ, EX) == EX
assert unify(RR, F3) == RR
assert unify(RR, ZZ) == RR
assert unify(RR, QQ) == RR
assert unify(RR, ALG) == RR
assert unify(RR, RR) == RR
assert unify(RR, CC) == CC
assert unify(RR, ZZ[x]) == RR[x]
assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
assert unify(RR, EX) == EX
assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)
assert unify(CC, F3) == CC
assert unify(CC, ZZ) == CC
assert unify(CC, QQ) == CC
assert unify(CC, ALG) == CC
assert unify(CC, RR) == CC
assert unify(CC, CC) == CC
assert unify(CC, ZZ[x]) == CC[x]
assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
assert unify(CC, EX) == EX
assert unify(ZZ[x], F3) == ZZ[x]
assert unify(ZZ[x], ZZ) == ZZ[x]
assert unify(ZZ[x], QQ) == QQ[x]
assert unify(ZZ[x], ALG) == ALG[x]
assert unify(ZZ[x], RR) == RR[x]
assert unify(ZZ[x], CC) == CC[x]
assert unify(ZZ[x], ZZ[x]) == ZZ[x]
assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ[x], EX) == EX
assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
assert unify(ZZ.frac_field(x), EX) == EX
assert unify(EX, F3) == EX
assert unify(EX, ZZ) == EX
assert unify(EX, QQ) == EX
assert unify(EX, ALG) == EX
assert unify(EX, RR) == EX
assert unify(EX, CC) == EX
assert unify(EX, ZZ[x]) == EX
assert unify(EX, ZZ.frac_field(x)) == EX
assert unify(EX, EX) == EX
示例3: test_construct_domain
# 需要导入模块: from sympy.polys.domains import RR [as 别名]
# 或者: from sympy.polys.domains.RR import frac_field [as 别名]
def test_construct_domain():
assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain([S(1), S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S(1)/2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
result = construct_domain([3.14, 1, S(1)/2])
assert isinstance(result[0], RealField)
assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]
assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])
assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))])
alg = QQ.algebraic_field(sqrt(2))
assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \
(alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))])
alg = QQ.algebraic_field(sqrt(2) + sqrt(3))
assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
(alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])
dom = ZZ[x]
assert construct_domain([2*x, 3]) == \
(dom, [dom.convert(2*x), dom.convert(3)])
dom = ZZ[x, y]
assert construct_domain([2*x, 3*y]) == \
(dom, [dom.convert(2*x), dom.convert(3*y)])
dom = QQ[x]
assert construct_domain([x/2, 3]) == \
(dom, [dom.convert(x/2), dom.convert(3)])
dom = QQ[x, y]
assert construct_domain([x/2, 3*y]) == \
(dom, [dom.convert(x/2), dom.convert(3*y)])
dom = RR[x]
assert construct_domain([x/2, 3.5]) == \
(dom, [dom.convert(x/2), dom.convert(3.5)])
dom = RR[x, y]
assert construct_domain([x/2, 3.5*y]) == \
(dom, [dom.convert(x/2), dom.convert(3.5*y)])
dom = ZZ.frac_field(x)
assert construct_domain([2/x, 3]) == \
(dom, [dom.convert(2/x), dom.convert(3)])
dom = ZZ.frac_field(x, y)
assert construct_domain([2/x, 3*y]) == \
(dom, [dom.convert(2/x), dom.convert(3*y)])
dom = RR.frac_field(x)
assert construct_domain([2/x, 3.5]) == \
(dom, [dom.convert(2/x), dom.convert(3.5)])
dom = RR.frac_field(x, y)
assert construct_domain([2/x, 3.5*y]) == \
(dom, [dom.convert(2/x), dom.convert(3.5*y)])
dom = RealField(prec=336)[x]
assert construct_domain([pi.evalf(100)*x]) == \
(dom, [dom.convert(pi.evalf(100)*x)])
assert construct_domain(2) == (ZZ, ZZ(2))
assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
assert construct_domain({}) == (ZZ, {})