本文整理汇总了Python中sympy.polys.domains.QQ.from_sympy方法的典型用法代码示例。如果您正苦于以下问题:Python QQ.from_sympy方法的具体用法?Python QQ.from_sympy怎么用?Python QQ.from_sympy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.polys.domains.QQ
的用法示例。
在下文中一共展示了QQ.from_sympy方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _construct_algebraic
# 需要导入模块: from sympy.polys.domains import QQ [as 别名]
# 或者: from sympy.polys.domains.QQ import from_sympy [as 别名]
def _construct_algebraic(coeffs, opt):
"""We know that coefficients are algebraic so construct the extension. """
from sympy.polys.numberfields import primitive_element
result, exts = [], set([])
for coeff in coeffs:
if coeff.is_Rational:
coeff = (None, 0, QQ.from_sympy(coeff))
else:
a = coeff.as_coeff_add()[0]
coeff -= a
b = coeff.as_coeff_mul()[0]
coeff /= b
exts.add(coeff)
a = QQ.from_sympy(a)
b = QQ.from_sympy(b)
coeff = (coeff, b, a)
result.append(coeff)
exts = list(exts)
g, span, H = primitive_element(exts, ex=True, polys=True)
root = sum([ s*ext for s, ext in zip(span, exts) ])
domain, g = QQ.algebraic_field((g, root)), g.rep.rep
for i, (coeff, a, b) in enumerate(result):
if coeff is not None:
coeff = a*domain.dtype.from_list(H[exts.index(coeff)], g, QQ) + b
else:
coeff = domain.dtype.from_list([b], g, QQ)
result[i] = coeff
return domain, result