本文整理汇总了Python中sympy.polys.densebasic.dmp_one函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_one函数的具体用法?Python dmp_one怎么用?Python dmp_one使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dmp_one函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dmp_fateman_poly_F_1
def dmp_fateman_poly_F_1(n, K):
"""Fateman's GCD benchmark: trivial GCD """
u = [K(1), K(0)]
for i in xrange(0, n):
u = [dmp_one(i, K), u]
v = [K(1), K(0), K(0)]
for i in xrange(0, n):
v = [dmp_one(i, K), dmp_zero(i), v]
m = n - 1
U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)
f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]
W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
Y = dmp_raise(f, m, 1, K)
F = dmp_mul(U, V, n, K)
G = dmp_mul(W, Y, n, K)
H = dmp_one(n, K)
return F, G, H
示例2: dmp_pow
def dmp_pow(f, n, u, K):
"""Raise f to the n-th power in `K[X]`. """
if not u:
return dup_pow(f, n, K)
if not n:
return dmp_one(u, K)
if n < 0:
raise ValueError("can't raise polynomial to a negative power")
if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K):
return f
g = dmp_one(u, K)
while True:
n, m = n//2, n
if m & 1:
g = dmp_mul(g, f, u, K)
if not n:
break
f = dmp_sqr(f, u, K)
return g
示例3: dmp_expand
def dmp_expand(polys, u, K):
"""
Multiply together several polynomials in ``K[X]``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densearith import dmp_expand
>>> f = ZZ.map([[1], [], [1, 0, 0]])
>>> g = ZZ.map([[1], [1]])
>>> dmp_expand([f, g], 1, ZZ)
[[1], [1], [1, 0, 0], [1, 0, 0]]
"""
if not polys:
return dmp_one(u, K)
f = polys[0]
for g in polys[1:]:
f = dmp_mul(f, g, u, K)
return f
示例4: _dmp_inner_gcd
def _dmp_inner_gcd(f, g, u, K):
"""Helper function for `dmp_inner_gcd()`. """
if not K.is_Exact:
try:
exact = K.get_exact()
except DomainError:
return dmp_one(u, K), f, g
f = dmp_convert(f, u, K, exact)
g = dmp_convert(g, u, K, exact)
h, cff, cfg = _dmp_inner_gcd(f, g, u, exact)
h = dmp_convert(h, u, exact, K)
cff = dmp_convert(cff, u, exact, K)
cfg = dmp_convert(cfg, u, exact, K)
return h, cff, cfg
elif K.has_Field:
if K.is_QQ and query('USE_HEU_GCD'):
try:
return dmp_qq_heu_gcd(f, g, u, K)
except HeuristicGCDFailed:
pass
return dmp_ff_prs_gcd(f, g, u, K)
else:
if K.is_ZZ and query('USE_HEU_GCD'):
try:
return dmp_zz_heu_gcd(f, g, u, K)
except HeuristicGCDFailed:
pass
return dmp_rr_prs_gcd(f, g, u, K)
示例5: dmp_fateman_poly_F_3
def dmp_fateman_poly_F_3(n, K):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
u = dup_from_raw_dict({n+1: K.one}, K)
for i in xrange(0, n-1):
u = dmp_add_term([u], dmp_one(i, K), n+1, i+1, K)
v = dmp_add_term(u, dmp_ground(K(2), n-2), 0, n, K)
f = dmp_sqr(dmp_add_term([dmp_neg(v, n-1, K)], dmp_one(n-1, K), n+1, n, K), n, K)
g = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K)
v = dmp_add_term(u, dmp_one(n-2, K), 0, n-1, K)
h = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
示例6: dmp_fateman_poly_F_2
def dmp_fateman_poly_F_2(n, K):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
u = [K(1), K(0)]
for i in xrange(0, n - 1):
u = [dmp_one(i, K), u]
m = n - 1
v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K)
f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K)
g = dmp_sqr([dmp_one(m, K), v], n, K)
v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K)
h = dmp_sqr([dmp_one(m, K), v], n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
示例7: _parse
def _parse(cls, rep, dom, lev=None):
if type(rep) is tuple:
num, den = rep
if lev is not None:
if type(num) is dict:
num = dmp_from_dict(num, lev, dom)
if type(den) is dict:
den = dmp_from_dict(den, lev, dom)
else:
num, num_lev = dmp_validate(num)
den, den_lev = dmp_validate(den)
if num_lev == den_lev:
lev = num_lev
else:
raise ValueError('inconsistent number of levels')
if dmp_zero_p(den, lev):
raise ZeroDivisionError('fraction denominator')
if dmp_zero_p(num, lev):
den = dmp_one(lev, dom)
else:
if dmp_negative_p(den, lev, dom):
num = dmp_neg(num, lev, dom)
den = dmp_neg(den, lev, dom)
else:
num = rep
if lev is not None:
if type(num) is dict:
num = dmp_from_dict(num, lev, dom)
elif type(num) is not list:
num = dmp_ground(dom.convert(num), lev)
else:
num, lev = dmp_validate(num)
den = dmp_one(lev, dom)
return num, den, lev
示例8: dmp_expand
def dmp_expand(polys, u, K):
"""Multiply together several polynomials in `K[X]`. """
if not polys:
return dmp_one(u, K)
f = polys[0]
for g in polys[1:]:
f = dmp_mul(f, g, u, K)
return f
示例9: _dmp_rr_trivial_gcd
def _dmp_rr_trivial_gcd(f, g, u, K):
"""Handle trivial cases in GCD algorithm over a ring. """
zero_f = dmp_zero_p(f, u)
zero_g = dmp_zero_p(g, u)
if zero_f and zero_g:
return tuple(dmp_zeros(3, u, K))
elif zero_f:
if K.is_nonnegative(dmp_ground_LC(g, u, K)):
return g, dmp_zero(u), dmp_one(u, K)
else:
return dmp_neg(g, u, K), dmp_zero(u), dmp_ground(-K.one, u)
elif zero_g:
if K.is_nonnegative(dmp_ground_LC(f, u, K)):
return f, dmp_one(u, K), dmp_zero(u)
else:
return dmp_neg(f, u, K), dmp_ground(-K.one, u), dmp_zero(u)
elif query('USE_SIMPLIFY_GCD'):
return _dmp_simplify_gcd(f, g, u, K)
else:
return None
示例10: dmp_pow
def dmp_pow(f, n, u, K):
"""
Raise ``f`` to the ``n``-th power in ``K[X]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densearith import dmp_pow
>>> f = ZZ.map([[1, 0], [1]])
>>> dmp_pow(f, 3, 1, ZZ)
[[1, 0, 0, 0], [3, 0, 0], [3, 0], [1]]
"""
if not u:
return dup_pow(f, n, K)
if not n:
return dmp_one(u, K)
if n < 0:
raise ValueError("can't raise polynomial to a negative power")
if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K):
return f
g = dmp_one(u, K)
while True:
n, m = n//2, n
if m & 1:
g = dmp_mul(g, f, u, K)
if not n:
break
f = dmp_sqr(f, u, K)
return g
示例11: dmp_zz_wang_lead_coeffs
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
"""Wang/EEZ: Compute correct leading coefficients. """
C, J, v = [], [0]*len(E), u-1
for h in H:
c = dmp_one(v, K)
d = dup_LC(h, K)*cs
for i in reversed(xrange(len(E))):
k, e, (t, _) = 0, E[i], T[i]
while not (d % e):
d, k = d//e, k+1
if k != 0:
c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1
C.append(c)
if any([ not j for j in J ]):
raise ExtraneousFactors # pragma: no cover
CC, HH = [], []
for c, h in zip(C, H):
d = dmp_eval_tail(c, A, v, K)
lc = dup_LC(h, K)
if K.is_one(cs):
cc = lc//d
else:
g = K.gcd(lc, d)
d, cc = d//g, lc//g
h, cs = dup_mul_ground(h, d, K), cs//d
c = dmp_mul_ground(c, cc, v, K)
CC.append(c)
HH.append(h)
if K.is_one(cs):
return f, HH, CC
CCC, HHH = [], []
for c, h in zip(CC, HH):
CCC.append(dmp_mul_ground(c, cs, v, K))
HHH.append(dmp_mul_ground(h, cs, 0, K))
f = dmp_mul_ground(f, cs**(len(H)-1), u, K)
return f, HHH, CCC
示例12: dmp_pow
def dmp_pow(f, n, u, K):
"""
Raise ``f`` to the ``n``-th power in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_pow(x*y + 1, 3)
x**3*y**3 + 3*x**2*y**2 + 3*x*y + 1
"""
if not u:
return dup_pow(f, n, K)
if not n:
return dmp_one(u, K)
if n < 0:
raise ValueError("can't raise polynomial to a negative power")
if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K):
return f
g = dmp_one(u, K)
while True:
n, m = n//2, n
if m & 1:
g = dmp_mul(g, f, u, K)
if not n:
break
f = dmp_sqr(f, u, K)
return g
示例13: dmp_zz_wang_hensel_lifting
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
"""Wang/EEZ: Parallel Hensel lifting algorithm. """
S, n, v = [f], len(A), u-1
H = list(H)
for i, a in enumerate(reversed(A[1:])):
s = dmp_eval_in(S[0], a, n-i, u-i, K)
S.insert(0, dmp_ground_trunc(s, p, v-i, K))
d = max(dmp_degree_list(f, u)[1:])
for j, s, a in zip(xrange(2, n+2), S, A):
G, w = list(H), j-1
I, J = A[:j-2], A[j-1:]
for i, (h, lc) in enumerate(zip(H, LC)):
lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w-1, K)
H[i] = [lc] + dmp_raise(h[1:], 1, w-1, K)
m = dmp_nest([K.one, -a], w, K)
M = dmp_one(w, K)
c = dmp_sub(s, dmp_expand(H, w, K), w, K)
dj = dmp_degree_in(s, w, w)
for k in xrange(0, dj):
if dmp_zero_p(c, w):
break
M = dmp_mul(M, m, w, K)
C = dmp_diff_eval_in(c, k+1, a, w, w, K)
if not dmp_zero_p(C, w-1):
C = dmp_quo_ground(C, K.factorial(k+1), w-1, K)
T = dmp_zz_diophantine(G, C, I, d, p, w-1, K)
for i, (h, t) in enumerate(zip(H, T)):
h = dmp_add_mul(h, dmp_raise(t, 1, w-1, K), M, w, K)
H[i] = dmp_ground_trunc(h, p, w, K)
h = dmp_sub(s, dmp_expand(H, w, K), w, K)
c = dmp_ground_trunc(h, p, w, K)
if dmp_expand(H, u, K) != f:
raise ExtraneousFactors # pragma: no cover
else:
return H
示例14: dmp_expand
def dmp_expand(polys, u, K):
"""
Multiply together several polynomials in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_expand([x**2 + y**2, x + 1])
x**3 + x**2 + x*y**2 + y**2
"""
if not polys:
return dmp_one(u, K)
f = polys[0]
for g in polys[1:]:
f = dmp_mul(f, g, u, K)
return f
示例15: dmp_prs_resultant
def dmp_prs_resultant(f, g, u, K):
"""
Resultant algorithm in ``K[X]`` using subresultant PRS.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_prs_resultant
>>> f = ZZ.map([[3, 0], [], [-1, 0, 0, -4]])
>>> g = ZZ.map([[1], [1, 0, 0, 0], [-9]])
>>> a = ZZ.map([[3, 0, 0, 0, 0], [1, 0, -27, 4]])
>>> b = ZZ.map([[-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]])
>>> dmp_prs_resultant(f, g, 1, ZZ) == (b[0], [f, g, a, b])
True
"""
if not u:
return dup_prs_resultant(f, g, K)
if dmp_zero_p(f, u) or dmp_zero_p(g, u):
return (dmp_zero(u-1), [])
R, B, D = dmp_inner_subresultants(f, g, u, K)
if dmp_degree(R[-1], u) > 0:
return (dmp_zero(u-1), R)
if dmp_one_p(R[-2], u, K):
return (dmp_LC(R[-1], K), R)
s, i, v = 1, 1, u-1
p = dmp_one(v, K)
q = dmp_one(v, K)
for b, d in zip(B, D)[:-1]:
du = dmp_degree(R[i-1], u)
dv = dmp_degree(R[i ], u)
dw = dmp_degree(R[i+1], u)
if du % 2 and dv % 2:
s = -s
lc, i = dmp_LC(R[i], K), i+1
p = dmp_mul(dmp_mul(p, dmp_pow(b, dv, v, K), v, K),
dmp_pow(lc, du-dw, v, K), v, K)
q = dmp_mul(q, dmp_pow(lc, dv*(1+d), v, K), v, K)
_, p, q = dmp_inner_gcd(p, q, v, K)
if s < 0:
p = dmp_neg(p, v, K)
i = dmp_degree(R[-2], u)
res = dmp_pow(dmp_LC(R[-1], K), i, v, K)
res = dmp_exquo(dmp_mul(res, p, v, K), q, v, K)
return res, R