当前位置: 首页>>代码示例>>Python>>正文


Python densearith.dup_div函数代码示例

本文整理汇总了Python中sympy.polys.densearith.dup_div函数的典型用法代码示例。如果您正苦于以下问题:Python dup_div函数的具体用法?Python dup_div怎么用?Python dup_div使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了dup_div函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dup_zz_hensel_step

def dup_zz_hensel_step(m, f, g, h, s, t, K):
    """
    One step in Hensel lifting in `Z[x]`.

    Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s`
    and `t` such that::

        f == g*h (mod m)
        s*g + t*h == 1 (mod m)

        lc(f) is not a zero divisor (mod m)
        lc(h) == 1

        deg(f) == deg(g) + deg(h)
        deg(s) < deg(h)
        deg(t) < deg(g)

    returns polynomials `G`, `H`, `S` and `T`, such that::

        f == G*H (mod m**2)
        S*G + T**H == 1 (mod m**2)

    References
    ==========

    1. [Gathen99]_

    """
    M = m**2

    e = dup_sub_mul(f, g, h, K)
    e = dup_trunc(e, M, K)

    q, r = dup_div(dup_mul(s, e, K), h, K)

    q = dup_trunc(q, M, K)
    r = dup_trunc(r, M, K)

    u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K)
    G = dup_trunc(dup_add(g, u, K), M, K)
    H = dup_trunc(dup_add(h, r, K), M, K)

    u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K)
    b = dup_trunc(dup_sub(u, [K.one], K), M, K)

    c, d = dup_div(dup_mul(s, b, K), H, K)

    c = dup_trunc(c, M, K)
    d = dup_trunc(d, M, K)

    u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K)
    S = dup_trunc(dup_sub(s, d, K), M, K)
    T = dup_trunc(dup_sub(t, u, K), M, K)

    return G, H, S, T
开发者ID:abhi98khandelwal,项目名称:sympy,代码行数:55,代码来源:factortools.py

示例2: dup_half_gcdex

def dup_half_gcdex(f, g, K):
    """
    Half extended Euclidean algorithm in ``F[x]``.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_half_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_half_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/1, 1/1])

    """
    if not (K.has_Field or not K.is_Exact):
        raise DomainError("can't compute half extended GCD over %s" % K)

    a, b = [K.one], []

    while g:
        q, r = dup_div(f, g, K)
        f, g = g, r
        a, b = b, dup_sub_mul(a, q, b, K)

    a = dup_exquo_ground(a, dup_LC(f, K), K)
    f = dup_monic(f, K)

    return a, f
开发者ID:addisonc,项目名称:sympy,代码行数:32,代码来源:euclidtools.py

示例3: test_dup_div

def test_dup_div():
    f, g, q, r = [5,4,3,2,1], [1,2,3], [5,-6,0], [20,1]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))

    f, g, q, r = [5,4,3,2,1,0], [1,2,0,0,9], [5,-6], [15,2,-44,54]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))
开发者ID:BDGLunde,项目名称:sympy,代码行数:16,代码来源:test_densearith.py

示例4: dup_half_gcdex

def dup_half_gcdex(f, g, K):
    """
    Half extended Euclidean algorithm in `F[x]`.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
    >>> g = x**3 + x**2 - 4*x - 4

    >>> R.dup_half_gcdex(f, g)
    (-1/5*x + 3/5, x + 1)

    """
    if not K.has_Field:
        raise DomainError("can't compute half extended GCD over %s" % K)

    a, b = [K.one], []

    while g:
        q, r = dup_div(f, g, K)
        f, g = g, r
        a, b = b, dup_sub_mul(a, q, b, K)

    a = dup_quo_ground(a, dup_LC(f, K), K)
    f = dup_monic(f, K)

    return a, f
开发者ID:AdrianPotter,项目名称:sympy,代码行数:33,代码来源:euclidtools.py

示例5: _dup_left_decompose

def _dup_left_decompose(f, h, K):
    """Helper function for :func:`_dup_decompose`."""
    g, i = {}, 0

    while f:
        q, r = dup_div(f, h, K)

        if dup_degree(r) > 0:
            return None
        else:
            g[i] = dup_LC(r, K)
            f, i = q, i + 1

    return dup_from_raw_dict(g, K)
开发者ID:asmeurer,项目名称:sympy,代码行数:14,代码来源:densetools.py

示例6: dup_trial_division

def dup_trial_division(f, factors, K):
    """Determine multiplicities of factors using trial division. """
    result = []

    for factor in factors:
        k = 0

        while True:
            q, r = dup_div(f, factor, K)

            if not r:
                f, k = q, k+1
            else:
                break

        result.append((factor, k))

    return _sort_factors(result)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:18,代码来源:factortools.py

示例7: dup_zz_factor

def dup_zz_factor(f, K):
    """
    Factor (non square-free) polynomials in `Z[x]`.

    Given a univariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Zassenhaus algorithm. Trial division is used to recover the
    multiplicities of factors.

    The result is returned as a tuple consisting of::

              (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*x**4 - 2`::

        >>> from sympy.polys.factortools import dup_zz_factor
        >>> from sympy.polys.domains import ZZ

        >>> dup_zz_factor([2, 0, 0, 0, -2], ZZ)
        (2, [([1, -1], 1), ([1, 1], 1), ([1, 0, 1], 1)])

    In result we got the following factorization::

                 f = 2 (x - 1) (x + 1) (x**2 + 1)

    Note that this is a complete factorization over integers,
    however over Gaussian integers we can factor the last term.

    By default, polynomials `x**n - 1` and `x**n + 1` are factored
    using cyclotomic decomposition to speedup computations. To
    disable this behaviour set cyclotomic=False.

    **References**

    1. [Gathen99]_

    """
    cont, g = dup_primitive(f, K)

    n = dup_degree(g)

    if dup_LC(g, K) < 0:
        cont, g = -cont, dup_neg(g, K)

    if n <= 0:
        return cont, []
    elif n == 1:
        return cont, [(g, 1)]

    if query('USE_IRREDUCIBLE_IN_FACTOR'):
        if dup_zz_irreducible_p(g, K):
            return cont, [(g, 1)]

    g = dup_sqf_part(g, K)
    H, factors = None, []

    if query('USE_CYCLOTOMIC_FACTOR'):
        H = dup_zz_cyclotomic_factor(g, K)

    if H is None:
        H = dup_zz_zassenhaus(g, K)

    for h in H:
        k = 0

        while True:
            q, r = dup_div(f, h, K)

            if not r:
                f, k = q, k+1
            else:
                break

        factors.append((h, k))

    return cont, _sort_factors(factors)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:81,代码来源:factortools.py

示例8: dup_zz_heu_gcd

def dup_zz_heu_gcd(f, g, K):
    """
    Heuristic polynomial GCD in ``Z[x]``.

    Given univariate polynomials ``f`` and ``g`` in ``Z[x]``, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation.  The final step is to verify if the result is the
    correct GCD. This gives cofactors as a side effect.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_zz_heu_gcd

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_zz_heu_gcd(f, g, ZZ)
    ([1, -1], [1, 1], [1, -2])

    **References**

    1. [Liao95]_

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    df = dup_degree(f)
    dg = dup_degree(g)

    gcd, f, g = dup_extract(f, g, K)

    if df == 0 or dg == 0:
        return [gcd], f, g

    f_norm = dup_max_norm(f, K)
    g_norm = dup_max_norm(g, K)

    B = 2*min(f_norm, g_norm) + 29

    x = max(min(B, 99*K.sqrt(B)),
            2*min(f_norm // abs(dup_LC(f, K)),
                  g_norm // abs(dup_LC(g, K))) + 2)

    for i in xrange(0, HEU_GCD_MAX):
        ff = dup_eval(f, x, K)
        gg = dup_eval(g, x, K)

        if ff and gg:
            h = K.gcd(ff, gg)

            cff = ff // h
            cfg = gg // h

            h = _dup_zz_gcd_interpolate(h, x, K)
            h = dup_primitive(h, K)[1]

            cff_, r = dup_div(f, h, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff_, cfg_

            cff = _dup_zz_gcd_interpolate(cff, x, K)

            h, r = dup_div(f, cff, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff, cfg_

            cfg = _dup_zz_gcd_interpolate(cfg, x, K)

            h, r = dup_div(g, cfg, K)

            if not r:
                cff_, r = dup_div(f, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
#.........这里部分代码省略.........
开发者ID:addisonc,项目名称:sympy,代码行数:101,代码来源:euclidtools.py


注:本文中的sympy.polys.densearith.dup_div函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。