当前位置: 首页>>代码示例>>Python>>正文


Python densearith.dmp_max_norm函数代码示例

本文整理汇总了Python中sympy.polys.densearith.dmp_max_norm函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_max_norm函数的具体用法?Python dmp_max_norm怎么用?Python dmp_max_norm使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了dmp_max_norm函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dmp_zz_collins_resultant

def dmp_zz_collins_resultant(f, g, u, K):
    """
    Collins's modular resultant algorithm in `Z[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_collins_resultant(f, g)
    -2*y**2 - 5*y + 1

    """

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u - 1)

    A = dmp_max_norm(f, u, K)
    B = dmp_max_norm(g, u, K)

    a = dmp_ground_LC(f, u, K)
    b = dmp_ground_LC(g, u, K)

    v = u - 1

    B = K(2)*K.factorial(K(n + m))*A**m*B**n
    r, p, P = dmp_zero(v), K.one, K.one

    while P <= B:
        p = K(nextprime(p))

        while not (a % p) or not (b % p):
            p = K(nextprime(p))

        F = dmp_ground_trunc(f, p, u, K)
        G = dmp_ground_trunc(g, p, u, K)

        try:
            R = dmp_zz_modular_resultant(F, G, p, u, K)
        except HomomorphismFailed:
            continue

        if K.is_one(P):
            r = R
        else:
            r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K)

        P *= p

    return r
开发者ID:AdrianPotter,项目名称:sympy,代码行数:57,代码来源:euclidtools.py

示例2: dmp_zz_collins_resultant

def dmp_zz_collins_resultant(f, g, u, K):
    """
    Collins's modular resultant algorithm in `Z[X]`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_collins_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_collins_resultant(f, g, 1, ZZ)
    [-2, -5, 1]

    """

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u-1)

    A = dmp_max_norm(f, u, K)
    B = dmp_max_norm(g, u, K)

    a = dmp_ground_LC(f, u, K)
    b = dmp_ground_LC(g, u, K)

    v = u - 1

    B = K(2)*K.factorial(n+m)*A**m*B**n
    r, p, P = dmp_zero(v), K.one, K.one

    while P <= B:
        p = K(nextprime(p))

        while not (a % p) or not (b % p):
            p = K(nextprime(p))

        F = dmp_ground_trunc(f, p, u, K)
        G = dmp_ground_trunc(g, p, u, K)

        try:
            R = dmp_zz_modular_resultant(F, G, p, u, K)
        except HomomorphismFailed:
            continue

        if K.is_one(P):
            r = R
        else:
            r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K)

        P *= p

    return r
开发者ID:dyao-vu,项目名称:meta-core,代码行数:57,代码来源:euclidtools.py

示例3: dmp_zz_mignotte_bound

def dmp_zz_mignotte_bound(f, u, K):
    """Mignotte bound for multivariate polynomials in `K[X]`. """
    a = dmp_max_norm(f, u, K)
    b = abs(dmp_ground_LC(f, u, K))
    n = sum(dmp_degree_list(f, u))

    return K.sqrt(K(n+1))*2**n*a*b
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:7,代码来源:factortools.py

示例4: dmp_zz_heu_gcd

def dmp_zz_heu_gcd(f, g, u, K):
    """
    Heuristic polynomial GCD in ``Z[X]``.

    Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation. The evaluation proces reduces f and g variable by
    variable into a large integer.  The final step  is to verify if the
    interpolated polynomial is the correct GCD. This gives cofactors of
    the input polynomials as a side effect.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_heu_gcd

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
    >>> g = ZZ.map([[1], [1, 0], []])

    >>> dmp_zz_heu_gcd(f, g, 1, ZZ)
    ([[1], [1, 0]], [[1], [1, 0]], [[1], []])

    **References**

    1. [Liao95]_

    """
    if not u:
        return dup_zz_heu_gcd(f, g, K)

    result = _dmp_rr_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    gcd, f, g = dmp_ground_extract(f, g, u, K)

    f_norm = dmp_max_norm(f, u, K)
    g_norm = dmp_max_norm(g, u, K)

    B = 2*min(f_norm, g_norm) + 29

    x = max(min(B, 99*K.sqrt(B)),
            2*min(f_norm // abs(dmp_ground_LC(f, u, K)),
                  g_norm // abs(dmp_ground_LC(g, u, K))) + 2)

    for i in xrange(0, HEU_GCD_MAX):
        ff = dmp_eval(f, x, u, K)
        gg = dmp_eval(g, x, u, K)

        v = u - 1

        if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)):
            h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K)

            h = _dmp_zz_gcd_interpolate(h, x, v, K)
            h = dmp_ground_primitive(h, u, K)[1]

            cff_, r = dmp_div(f, h, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff_, cfg_

            cff = _dmp_zz_gcd_interpolate(cff, x, v, K)

            h, r = dmp_div(f, cff, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff, cfg_

            cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K)

            h, r = dmp_div(g, cfg, u, K)

            if dmp_zero_p(r, u):
                cff_, r = dmp_div(f, h, u, K)

                if dmp_zero_p(r, u):
#.........这里部分代码省略.........
开发者ID:addisonc,项目名称:sympy,代码行数:101,代码来源:euclidtools.py

示例5: max_norm

 def max_norm(f):
     """Returns maximum norm of `f`. """
     return dmp_max_norm(f.rep, f.lev, f.dom)
开发者ID:fxkr,项目名称:sympy,代码行数:3,代码来源:polyclasses.py

示例6: test_dmp_max_norm

def test_dmp_max_norm():
    assert dmp_max_norm([[[]]], 2, ZZ) == 0
    assert dmp_max_norm([[[1]]], 2, ZZ) == 1

    assert dmp_max_norm(f_0, 2, ZZ) == 6
开发者ID:BDGLunde,项目名称:sympy,代码行数:5,代码来源:test_densearith.py

示例7: dmp_factor_list

def dmp_factor_list(f, u, K0):
    """Factor multivariate polynomials into irreducibles in `K[X]`. """
    if not u:
        return dup_factor_list(f, K0)

    J, f = dmp_terms_gcd(f, u, K0)
    cont, f = dmp_ground_primitive(f, u, K0)

    if K0.is_FiniteField:  # pragma: no cover
        coeff, factors = dmp_gf_factor(f, u, K0)
    elif K0.is_Algebraic:
        coeff, factors = dmp_ext_factor(f, u, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dmp_convert(f, u, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.is_Field:
            K = K0.get_ring()

            denom, f = dmp_clear_denoms(f, u, K0, K)
            f = dmp_convert(f, u, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            levels, f, v = dmp_exclude(f, u, K)
            coeff, factors = dmp_zz_factor(f, v, K)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_include(f, levels, v, K), k)
        elif K.is_Poly:
            f, v = dmp_inject(f, u, K)

            coeff, factors = dmp_factor_list(f, v, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, v, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.is_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_convert(f, u, K, K0), k)

            coeff = K0.convert(coeff, K)
            coeff = K0.quo(coeff, denom)

            if K0_inexact:
                for i, (f, k) in enumerate(factors):
                    max_norm = dmp_max_norm(f, u, K0)
                    f = dmp_quo_ground(f, max_norm, u, K0)
                    f = dmp_convert(f, u, K0, K0_inexact)
                    factors[i] = (f, k)
                    coeff = K0.mul(coeff, K0.pow(max_norm, k))

                coeff = K0_inexact.convert(coeff, K0)
                K0 = K0_inexact

    for i, j in enumerate(reversed(J)):
        if not j:
            continue

        term = {(0,)*(u - i) + (1,) + (0,)*i: K0.one}
        factors.insert(0, (dmp_from_dict(term, u, K0), j))

    return coeff*cont, _sort_factors(factors)
开发者ID:bjodah,项目名称:sympy,代码行数:71,代码来源:factortools.py


注:本文中的sympy.polys.densearith.dmp_max_norm函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。