本文整理汇总了Python中sympy.polys.densearith.dmp_expand函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_expand函数的具体用法?Python dmp_expand怎么用?Python dmp_expand使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dmp_expand函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dmp_zz_wang_hensel_lifting
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
"""Wang/EEZ: Parallel Hensel lifting algorithm. """
S, n, v = [f], len(A), u-1
H = list(H)
for i, a in enumerate(reversed(A[1:])):
s = dmp_eval_in(S[0], a, n-i, u-i, K)
S.insert(0, dmp_ground_trunc(s, p, v-i, K))
d = max(dmp_degree_list(f, u)[1:])
for j, s, a in zip(xrange(2, n+2), S, A):
G, w = list(H), j-1
I, J = A[:j-2], A[j-1:]
for i, (h, lc) in enumerate(zip(H, LC)):
lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w-1, K)
H[i] = [lc] + dmp_raise(h[1:], 1, w-1, K)
m = dmp_nest([K.one, -a], w, K)
M = dmp_one(w, K)
c = dmp_sub(s, dmp_expand(H, w, K), w, K)
dj = dmp_degree_in(s, w, w)
for k in xrange(0, dj):
if dmp_zero_p(c, w):
break
M = dmp_mul(M, m, w, K)
C = dmp_diff_eval_in(c, k+1, a, w, w, K)
if not dmp_zero_p(C, w-1):
C = dmp_quo_ground(C, K.factorial(k+1), w-1, K)
T = dmp_zz_diophantine(G, C, I, d, p, w-1, K)
for i, (h, t) in enumerate(zip(H, T)):
h = dmp_add_mul(h, dmp_raise(t, 1, w-1, K), M, w, K)
H[i] = dmp_ground_trunc(h, p, w, K)
h = dmp_sub(s, dmp_expand(H, w, K), w, K)
c = dmp_ground_trunc(h, p, w, K)
if dmp_expand(H, u, K) != f:
raise ExtraneousFactors # pragma: no cover
else:
return H
示例2: dmp_lift
def dmp_lift(f, u, K):
"""
Convert algebraic coefficients to integers in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, QQ
>>> from sympy import I
>>> K = QQ.algebraic_field(I)
>>> R, x = ring("x", K)
>>> f = x**2 + K([QQ(1), QQ(0)])*x + K([QQ(2), QQ(0)])
>>> R.dmp_lift(f)
x**8 + 2*x**6 + 9*x**4 - 8*x**2 + 16
"""
if not K.is_Algebraic:
raise DomainError(
'computation can be done only in an algebraic domain')
F, monoms, polys = dmp_to_dict(f, u), [], []
for monom, coeff in F.items():
if not coeff.is_ground:
monoms.append(monom)
perms = variations([-1, 1], len(monoms), repetition=True)
for perm in perms:
G = dict(F)
for sign, monom in zip(perm, monoms):
if sign == -1:
G[monom] = -G[monom]
polys.append(dmp_from_dict(G, u, K))
return dmp_convert(dmp_expand(polys, u, K), u, K, K.dom)
示例3: dmp_lift
def dmp_lift(f, u, K):
"""
Convert algebraic coefficients to integers in ``K[X]``.
Examples
========
>>> from sympy import I
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.densetools import dmp_lift
>>> K = QQ.algebraic_field(I)
>>> f = [K(1), K([QQ(1), QQ(0)]), K([QQ(2), QQ(0)])]
>>> dmp_lift(f, 0, K)
[1/1, 0/1, 2/1, 0/1, 9/1, 0/1, -8/1, 0/1, 16/1]
"""
if not K.is_Algebraic:
raise DomainError(
'computation can be done only in an algebraic domain')
F, monoms, polys = dmp_to_dict(f, u), [], []
for monom, coeff in F.iteritems():
if not coeff.is_ground:
monoms.append(monom)
perms = variations([-1, 1], len(monoms), repetition=True)
for perm in perms:
G = dict(F)
for sign, monom in zip(perm, monoms):
if sign == -1:
G[monom] = -G[monom]
polys.append(dmp_from_dict(G, u, K))
return dmp_convert(dmp_expand(polys, u, K), u, K, K.dom)
示例4: dmp_zz_diophantine
def dmp_zz_diophantine(F, c, A, d, p, u, K):
"""Wang/EEZ: Solve multivariate Diophantine equations. """
if not A:
S = [ [] for _ in F ]
n = dup_degree(c)
for i, coeff in enumerate(c):
if not coeff:
continue
T = dup_zz_diophantine(F, n-i, p, K)
for j, (s, t) in enumerate(zip(S, T)):
t = dup_mul_ground(t, coeff, K)
S[j] = dup_trunc(dup_add(s, t, K), p, K)
else:
n = len(A)
e = dmp_expand(F, u, K)
a, A = A[-1], A[:-1]
B, G = [], []
for f in F:
B.append(dmp_quo(e, f, u, K))
G.append(dmp_eval_in(f, a, n, u, K))
C = dmp_eval_in(c, a, n, u, K)
v = u - 1
S = dmp_zz_diophantine(G, C, A, d, p, v, K)
S = [ dmp_raise(s, 1, v, K) for s in S ]
for s, b in zip(S, B):
c = dmp_sub_mul(c, s, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
m = dmp_nest([K.one, -a], n, K)
M = dmp_one(n, K)
for k in xrange(0, d):
if dmp_zero_p(c, u):
break
M = dmp_mul(M, m, u, K)
C = dmp_diff_eval_in(c, k+1, a, n, u, K)
if not dmp_zero_p(C, v):
C = dmp_quo_ground(C, K.factorial(k+1), v, K)
T = dmp_zz_diophantine(G, C, A, d, p, v, K)
for i, t in enumerate(T):
T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)
for i, (s, t) in enumerate(zip(S, T)):
S[i] = dmp_add(s, t, u, K)
for t, b in zip(T, B):
c = dmp_sub_mul(c, t, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
S = [ dmp_ground_trunc(s, p, u, K) for s in S ]
return S
示例5: test_dmp_expand
def test_dmp_expand():
assert dmp_expand((), 1, ZZ) == [[1]]
assert dmp_expand(([[1],[2],[3]], [[1],[2]], [[7],[5],[4],[3]]), 1, ZZ) == \
dmp_mul([[1],[2],[3]], dmp_mul([[1],[2]], [[7],[5],[4],[3]], 1, ZZ), 1, ZZ)
示例6: test_dmp_zz_wang
def test_dmp_zz_wang():
p = ZZ(nextprime(dmp_zz_mignotte_bound(w_1, 2, ZZ)))
assert p == ZZ(6291469)
t_1, k_1, e_1 = dmp_normal([[1],[]], 1, ZZ), 1, ZZ(-14)
t_2, k_2, e_2 = dmp_normal([[1, 0]], 1, ZZ), 2, ZZ(3)
t_3, k_3, e_3 = dmp_normal([[1],[ 1, 0]], 1, ZZ), 2, ZZ(-11)
t_4, k_4, e_4 = dmp_normal([[1],[-1, 0]], 1, ZZ), 1, ZZ(-17)
T = [t_1, t_2, t_3, t_4]
K = [k_1, k_2, k_3, k_4]
E = [e_1, e_2, e_3, e_4]
T = zip(T, K)
A = [ZZ(-14), ZZ(3)]
S = dmp_eval_tail(w_1, A, 2, ZZ)
cs, s = dup_primitive(S, ZZ)
assert cs == 1 and s == S == \
dup_normal([1036728, 915552, 55748, 105621, -17304, -26841, -644], ZZ)
assert dmp_zz_wang_non_divisors(E, cs, 4, ZZ) == [7, 3, 11, 17]
assert dup_sqf_p(s, ZZ) and dup_degree(s) == dmp_degree(w_1, 2)
_, H = dup_zz_factor_sqf(s, ZZ)
h_1 = dup_normal([44, 42, 1], ZZ)
h_2 = dup_normal([126, -9, 28], ZZ)
h_3 = dup_normal([187, 0, -23], ZZ)
assert H == [h_1, h_2, h_3]
lc_1 = dmp_normal([[-4], [-4,0]], 1, ZZ)
lc_2 = dmp_normal([[-1,0,0], []], 1, ZZ)
lc_3 = dmp_normal([[1], [], [-1,0,0]], 1, ZZ)
LC = [lc_1, lc_2, lc_3]
assert dmp_zz_wang_lead_coeffs(w_1, T, cs, E, H, A, 2, ZZ) == (w_1, H, LC)
H_1 = [ dmp_normal(t, 0, ZZ) for t in [[44L,42L,1L],[126L,-9L,28L],[187L,0L,-23L]] ]
H_2 = [ dmp_normal(t, 1, ZZ) for t in [[[-4,-12],[-3,0],[1]],[[-9,0],[-9],[-2,0]],[[1,0,-9],[],[1,-9]]] ]
H_3 = [ dmp_normal(t, 1, ZZ) for t in [[[-4,-12],[-3,0],[1]],[[-9,0],[-9],[-2,0]],[[1,0,-9],[],[1,-9]]] ]
c_1 = dmp_normal([-70686,-5863,-17826,2009,5031,74], 0, ZZ)
c_2 = dmp_normal([[9,12,-45,-108,-324],[18,-216,-810,0],[2,9,-252,-288,-945],[-30,-414,0],[2,-54,-3,81],[12,0]], 1, ZZ)
c_3 = dmp_normal([[-36,-108,0],[-27,-36,-108],[-8,-42,0],[-6,0,9],[2,0]], 1, ZZ)
T_1 = [ dmp_normal(t, 0, ZZ) for t in [[-3,0],[-2],[1]] ]
T_2 = [ dmp_normal(t, 1, ZZ) for t in [[[-1,0],[]],[[-3],[]],[[-6]]] ]
T_3 = [ dmp_normal(t, 1, ZZ) for t in [[[]],[[]],[[-1]]] ]
assert dmp_zz_diophantine(H_1, c_1, [], 5, p, 0, ZZ) == T_1
assert dmp_zz_diophantine(H_2, c_2, [ZZ(-14)], 5, p, 1, ZZ) == T_2
assert dmp_zz_diophantine(H_3, c_3, [ZZ(-14)], 5, p, 1, ZZ) == T_3
factors = dmp_zz_wang_hensel_lifting(w_1, H, LC, A, p, 2, ZZ)
assert dmp_expand(factors, 2, ZZ) == w_1