本文整理汇总了Python中sympy.polys.densearith.dmp_div函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_div函数的具体用法?Python dmp_div怎么用?Python dmp_div使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dmp_div函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dmp_div
def test_dmp_div():
f, g, q, r = [5,4,3,2,1], [1,2,3], [5,-6,0], [20,1]
assert dmp_div(f, g, 0, ZZ) == (q, r)
assert dmp_quo(f, g, 0, ZZ) == q
assert dmp_rem(f, g, 0, ZZ) == r
raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 0, ZZ))
f, g, q, r = [[[1]]], [[[2]],[1]], [[[]]], [[[1]]]
assert dmp_div(f, g, 2, ZZ) == (q, r)
assert dmp_quo(f, g, 2, ZZ) == q
assert dmp_rem(f, g, 2, ZZ) == r
raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 2, ZZ))
示例2: dmp_trial_division
def dmp_trial_division(f, factors, u, K):
"""Determine multiplicities of factors using trial division. """
result = []
for factor in factors:
k = 0
while True:
q, r = dmp_div(f, factor, u, K)
if dmp_zero_p(r, u):
f, k = q, k+1
else:
break
result.append((factor, k))
return _sort_factors(result)
示例3: dmp_zz_factor
def dmp_zz_factor(f, u, K):
"""
Factor (non square-free) polynomials in `Z[X]`.
Given a multivariate polynomial `f` in `Z[x]` computes its complete
factorization `f_1, ..., f_n` into irreducibles over integers::
f = content(f) f_1**k_1 ... f_n**k_n
The factorization is computed by reducing the input polynomial
into a primitive square-free polynomial and factoring it using
Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
is used to recover the multiplicities of factors.
The result is returned as a tuple consisting of::
(content(f), [(f_1, k_1), ..., (f_n, k_n))
Consider polynomial `f = 2*(x**2 - y**2)`::
>>> from sympy.polys.factortools import dmp_zz_factor
>>> from sympy.polys.domains import ZZ
>>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ)
(2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)])
In result we got the following factorization::
f = 2 (x - y) (x + y)
**References**
1. [Gathen99]_
"""
if not u:
return dup_zz_factor(f, K)
if dmp_zero_p(f, u):
return K.zero, []
cont, g = dmp_ground_primitive(f, u, K)
if dmp_ground_LC(g, u, K) < 0:
cont, g = -cont, dmp_neg(g, u, K)
if all([ d <= 0 for d in dmp_degree_list(g, u) ]):
return cont, []
G, g = dmp_primitive(g, u, K)
factors = []
if dmp_degree(g, u) > 0:
g = dmp_sqf_part(g, u, K)
H = dmp_zz_wang(g, u, K)
for h in H:
k = 0
while True:
q, r = dmp_div(f, h, u, K)
if dmp_zero_p(r, u):
f, k = q, k+1
else:
break
factors.append((h, k))
for g, k in dmp_zz_factor(G, u-1, K)[1]:
factors.insert(0, ([g], k))
return cont, _sort_factors(factors)
示例4: dmp_zz_heu_gcd
def dmp_zz_heu_gcd(f, g, u, K):
"""
Heuristic polynomial GCD in ``Z[X]``.
Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
such that::
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)
The algorithm is purely heuristic which means it may fail to compute
the GCD. This will be signaled by raising an exception. In this case
you will need to switch to another GCD method.
The algorithm computes the polynomial GCD by evaluating polynomials
f and g at certain points and computing (fast) integer GCD of those
evaluations. The polynomial GCD is recovered from the integer image
by interpolation. The evaluation proces reduces f and g variable by
variable into a large integer. The final step is to verify if the
interpolated polynomial is the correct GCD. This gives cofactors of
the input polynomials as a side effect.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_zz_heu_gcd
>>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
>>> g = ZZ.map([[1], [1, 0], []])
>>> dmp_zz_heu_gcd(f, g, 1, ZZ)
([[1], [1, 0]], [[1], [1, 0]], [[1], []])
**References**
1. [Liao95]_
"""
if not u:
return dup_zz_heu_gcd(f, g, K)
result = _dmp_rr_trivial_gcd(f, g, u, K)
if result is not None:
return result
df = dmp_degree(f, u)
dg = dmp_degree(g, u)
gcd, f, g = dmp_ground_extract(f, g, u, K)
f_norm = dmp_max_norm(f, u, K)
g_norm = dmp_max_norm(g, u, K)
B = 2*min(f_norm, g_norm) + 29
x = max(min(B, 99*K.sqrt(B)),
2*min(f_norm // abs(dmp_ground_LC(f, u, K)),
g_norm // abs(dmp_ground_LC(g, u, K))) + 2)
for i in xrange(0, HEU_GCD_MAX):
ff = dmp_eval(f, x, u, K)
gg = dmp_eval(g, x, u, K)
v = u - 1
if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)):
h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K)
h = _dmp_zz_gcd_interpolate(h, x, v, K)
h = dmp_ground_primitive(h, u, K)[1]
cff_, r = dmp_div(f, h, u, K)
if dmp_zero_p(r, u):
cfg_, r = dmp_div(g, h, u, K)
if dmp_zero_p(r, u):
h = dmp_mul_ground(h, gcd, u, K)
return h, cff_, cfg_
cff = _dmp_zz_gcd_interpolate(cff, x, v, K)
h, r = dmp_div(f, cff, u, K)
if dmp_zero_p(r, u):
cfg_, r = dmp_div(g, h, u, K)
if dmp_zero_p(r, u):
h = dmp_mul_ground(h, gcd, u, K)
return h, cff, cfg_
cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K)
h, r = dmp_div(g, cfg, u, K)
if dmp_zero_p(r, u):
cff_, r = dmp_div(f, h, u, K)
if dmp_zero_p(r, u):
#.........这里部分代码省略.........
示例5: div
def div(f, g):
"""Polynomial division with remainder of `f` and `g`. """
lev, dom, per, F, G = f.unify(g)
q, r = dmp_div(F, G, lev, dom)
return per(q), per(r)