当前位置: 首页>>代码示例>>Python>>正文


Python densearith.dmp_add函数代码示例

本文整理汇总了Python中sympy.polys.densearith.dmp_add函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_add函数的具体用法?Python dmp_add怎么用?Python dmp_add使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了dmp_add函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dmp_eval

def dmp_eval(f, a, u, K):
    """
    Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dmp_eval

    >>> f = ZZ.map([[2, 3], [1, 2]])

    >>> dmp_eval(f, 2, 1, ZZ)
    [5, 8]

    """
    if not u:
        return dup_eval(f, a, K)

    if not a:
        return dmp_TC(f, K)

    result, v = dmp_LC(f, K), u - 1

    for coeff in f[1:]:
        result = dmp_mul_ground(result, a, v, K)
        result = dmp_add(result, coeff, v, K)

    return result
开发者ID:jenshnielsen,项目名称:sympy,代码行数:29,代码来源:densetools.py

示例2: dmp_eval

def dmp_eval(f, a, u, K):
    """
    Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_eval(2*x*y + 3*x + y + 2, 2)
    5*y + 8

    """
    if not u:
        return dup_eval(f, a, K)

    if not a:
        return dmp_TC(f, K)

    result, v = dmp_LC(f, K), u - 1

    for coeff in f[1:]:
        result = dmp_mul_ground(result, a, v, K)
        result = dmp_add(result, coeff, v, K)

    return result
开发者ID:asmeurer,项目名称:sympy,代码行数:27,代码来源:densetools.py

示例3: dup_real_imag

def dup_real_imag(f, K):
    """
    Return bivariate polynomials ``f1`` and ``f2``, such that ``f = f1 + f2*I``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dup_real_imag

    >>> dup_real_imag([ZZ(1), ZZ(1), ZZ(1), ZZ(1)], ZZ)
    ([[1], [1], [-3, 0, 1], [-1, 0, 1]], [[3, 0], [2, 0], [-1, 0, 1, 0]])

    """
    if not K.is_ZZ and not K.is_QQ:
        raise DomainError(
            "computing real and imaginary parts is not supported over %s" % K)

    f1 = dmp_zero(1)
    f2 = dmp_zero(1)

    if not f:
        return f1, f2

    g = [[[K.one, K.zero]], [[K.one], []]]
    h = dmp_ground(f[0], 2)

    for c in f[1:]:
        h = dmp_mul(h, g, 2, K)
        h = dmp_add_term(h, dmp_ground(c, 1), 0, 2, K)

    H = dup_to_raw_dict(h)

    for k, h in H.iteritems():
        m = k % 4

        if not m:
            f1 = dmp_add(f1, h, 1, K)
        elif m == 1:
            f2 = dmp_add(f2, h, 1, K)
        elif m == 2:
            f1 = dmp_sub(f1, h, 1, K)
        else:
            f2 = dmp_sub(f2, h, 1, K)

    return f1, f2
开发者ID:jenshnielsen,项目名称:sympy,代码行数:46,代码来源:densetools.py

示例4: dup_real_imag

def dup_real_imag(f, K):
    """
    Return bivariate polynomials ``f1`` and ``f2``, such that ``f = f1 + f2*I``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dup_real_imag(x**3 + x**2 + x + 1)
    (x**3 + x**2 - 3*x*y**2 + x - y**2 + 1, 3*x**2*y + 2*x*y - y**3 + y)

    """
    if not K.is_ZZ and not K.is_QQ:
        raise DomainError("computing real and imaginary parts is not supported over %s" % K)

    f1 = dmp_zero(1)
    f2 = dmp_zero(1)

    if not f:
        return f1, f2

    g = [[[K.one, K.zero]], [[K.one], []]]
    h = dmp_ground(f[0], 2)

    for c in f[1:]:
        h = dmp_mul(h, g, 2, K)
        h = dmp_add_term(h, dmp_ground(c, 1), 0, 2, K)

    H = dup_to_raw_dict(h)

    for k, h in H.items():
        m = k % 4

        if not m:
            f1 = dmp_add(f1, h, 1, K)
        elif m == 1:
            f2 = dmp_add(f2, h, 1, K)
        elif m == 2:
            f1 = dmp_sub(f1, h, 1, K)
        else:
            f2 = dmp_sub(f2, h, 1, K)

    return f1, f2
开发者ID:asmeurer,项目名称:sympy,代码行数:45,代码来源:densetools.py

示例5: add

    def add(f, g):
        """Add two multivariate fractions `f` and `g`. """
        if isinstance(g, DMP):
            lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
            num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den
        else:
            lev, dom, per, F, G = f.frac_unify(g)
            (F_num, F_den), (G_num, G_den) = F, G

            num = dmp_add(dmp_mul(F_num, G_den, lev, dom), dmp_mul(F_den, G_num, lev, dom), lev, dom)
            den = dmp_mul(F_den, G_den, lev, dom)

        return per(num, den)
开发者ID:ness01,项目名称:sympy,代码行数:13,代码来源:polyclasses.py

示例6: dmp_zz_diophantine

def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [ [] for _ in F ]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n-i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [ dmp_raise(s, 1, v, K) for s in S ]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in xrange(0, d):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k+1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(k+1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [ dmp_ground_trunc(s, p, u, K) for s in S ]

    return S
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:66,代码来源:factortools.py

示例7: dmp_zz_modular_resultant

def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of ``f`` and ``g`` modulo a prime ``p``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_modular_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
    [-2, 0, 1]

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
开发者ID:addisonc,项目名称:sympy,代码行数:70,代码来源:euclidtools.py

示例8: add

 def add(f, g):
     """Add two multivariate polynomials `f` and `g`. """
     lev, dom, per, F, G = f.unify(g)
     return per(dmp_add(F, G, lev, dom))
开发者ID:fxkr,项目名称:sympy,代码行数:4,代码来源:polyclasses.py

示例9: test_dmp_add

def test_dmp_add():
    assert dmp_add([ZZ(1),ZZ(2)], [ZZ(1)], 0, ZZ) == \
           dup_add([ZZ(1),ZZ(2)], [ZZ(1)], ZZ)
    assert dmp_add([QQ(1,2),QQ(2,3)], [QQ(1)], 0, QQ) == \
           dup_add([QQ(1,2),QQ(2,3)], [QQ(1)], QQ)

    assert dmp_add([[[]]], [[[]]], 2, ZZ) == [[[]]]
    assert dmp_add([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[ZZ(1)]]]
    assert dmp_add([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(1)]]]
    assert dmp_add([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(3)]]]
    assert dmp_add([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(3)]]]

    assert dmp_add([[[]]], [[[]]], 2, QQ) == [[[]]]
    assert dmp_add([[[QQ(1,2)]]], [[[]]], 2, QQ) == [[[QQ(1,2)]]]
    assert dmp_add([[[]]], [[[QQ(1,2)]]], 2, QQ) == [[[QQ(1,2)]]]
    assert dmp_add([[[QQ(2,7)]]], [[[QQ(1,7)]]], 2, QQ) == [[[QQ(3,7)]]]
    assert dmp_add([[[QQ(1,7)]]], [[[QQ(2,7)]]], 2, QQ) == [[[QQ(3,7)]]]
开发者ID:BDGLunde,项目名称:sympy,代码行数:17,代码来源:test_densearith.py

示例10: dmp_zz_modular_resultant

def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of `f` and `g` modulo a prime `p`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_modular_resultant(f, g, 5)
    -2*y**2 + 1

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
开发者ID:AdrianPotter,项目名称:sympy,代码行数:71,代码来源:euclidtools.py


注:本文中的sympy.polys.densearith.dmp_add函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。