当前位置: 首页>>代码示例>>Python>>正文


Python polys.groebner函数代码示例

本文整理汇总了Python中sympy.polys.groebner函数的典型用法代码示例。如果您正苦于以下问题:Python groebner函数的具体用法?Python groebner怎么用?Python groebner使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了groebner函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_GroebnerBasis

def test_GroebnerBasis():
    assert str(groebner([], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"

    F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]

    assert str(groebner(F, order='grlex')) == \
        "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
    assert str(groebner(F, order='lex')) == \
        "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
开发者ID:dyao-vu,项目名称:meta-core,代码行数:9,代码来源:test_str.py

示例2: solve_biquadratic

def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations. """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return None

    if len(G) != 2:
        raise SolveFailed

    p, q = G
    x, y = opt.gens

    p = Poly(p, x, expand=False)
    q = q.ltrim(-1)

    p_roots = [ rcollect(expr, y) for expr in roots(p).keys() ]
    q_roots = roots(q).keys()

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions)
开发者ID:Jerryy,项目名称:sympy,代码行数:27,代码来源:polysys.py

示例3: _solve_reduced_system

    def _solve_reduced_system(system, gens, entry=False):
        """Recursively solves reduced polynomial systems. """
        if len(system) == len(gens) == 1:
            zeros = list(roots(system[0], gens[-1]).keys())
            return [(zero,) for zero in zeros]

        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            if not entry:
                return []
            else:
                return None

        univariate = list(filter(_is_univariate, basis))

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise NotImplementedError(filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))

        gens = f.gens
        gen = gens[-1]

        zeros = list(roots(f.ltrim(gen)).keys())

        if not zeros:
            return []

        if len(basis) == 1:
            return [(zero,) for zero in zeros]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = _subs_root(b, gen, zero)

                if eq is not S.Zero:
                    new_system.append(eq)

            for solution in _solve_reduced_system(new_system, new_gens):
                solutions.append(solution + (zero,))

        if solutions and len(solutions[0]) != len(gens):
            raise NotImplementedError(filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))
        return solutions
开发者ID:bjodah,项目名称:sympy,代码行数:56,代码来源:polysys.py

示例4: solve_biquadratic

def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations.

    Examples
    ========

    >>> from sympy.polys import Options, Poly
    >>> from sympy.abc import x, y
    >>> from sympy.solvers.polysys import solve_biquadratic
    >>> NewOption = Options((x, y), {'domain': 'ZZ'})

    >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
    >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(1/3, 3), (41/27, 11/9)]

    >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
    >>> b = Poly(-y + x - 4, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
      sqrt(29)/2)]
    """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return None

    if len(G) != 2:
        raise SolveFailed

    x, y = opt.gens
    p, q = G
    if not p.gcd(q).is_ground:
        # not 0-dimensional
        raise SolveFailed

    p = Poly(p, x, expand=False)
    p_roots = [rcollect(expr, y) for expr in roots(p).keys()]

    q = q.ltrim(-1)
    q_roots = list(roots(q).keys())

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions, key=default_sort_key)
开发者ID:bjodah,项目名称:sympy,代码行数:50,代码来源:polysys.py

示例5: solve_reduced_system

    def solve_reduced_system(system, gens, entry=False):
        """Recursively solves reduced polynomial systems. """
        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            if not entry:
                return []
            else:
                return None

        univariate = filter(is_univariate, basis)
        basis = [ b.as_basic() for b in basis ]

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise ValueError("only zero-dimensional systems supported")

        gens = f.gens
        f = f.as_basic()

        zeros = roots(f, gens[-1]).keys()

        if not zeros:
            return []

        if len(basis) == 1:
            return [ [zero] for zero in zeros ]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = b.subs(gens[-1], zero).expand()

                if not eq.is_zero:
                    new_system.append(eq)

            for solution in solve_reduced_system(new_system, new_gens):
                solutions.append(solution + [zero])

        return solutions
开发者ID:Aang,项目名称:sympy,代码行数:45,代码来源:polysys.py

示例6: solve_triangulated

def solve_triangulated(polys, *gens, **args):
    """
    Solve a polynomial system using Gianni-Kalkbrenner algorithm.

    The algorithm proceeds by computing one Groebner basis in the ground
    domain and then by iteratively computing polynomial factorizations in
    appropriately constructed algebraic extensions of the ground domain.

    Examples
    ========

    >>> from sympy.solvers.polysys import solve_triangulated
    >>> from sympy.abc import x, y, z

    >>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]

    >>> solve_triangulated(F, x, y, z)
    [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    References
    ==========

    1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
    Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
    Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989

    """
    G = groebner(polys, gens, polys=True)
    G = list(reversed(G))

    domain = args.get('domain')

    if domain is not None:
        for i, g in enumerate(G):
            G[i] = g.set_domain(domain)

    f, G = G[0].ltrim(-1), G[1:]
    dom = f.get_domain()

    zeros = f.ground_roots()
    solutions = set([])

    for zero in zeros:
        solutions.add(((zero,), dom))

    var_seq = reversed(gens[:-1])
    vars_seq = postfixes(gens[1:])

    for var, vars in zip(var_seq, vars_seq):
        _solutions = set([])

        for values, dom in solutions:
            H, mapping = [], zip(vars, values)

            for g in G:
                _vars = (var,) + vars

                if g.has_only_gens(*_vars) and g.degree(var) != 0:
                    h = g.ltrim(var).eval(dict(mapping))

                    if g.degree(var) == h.degree():
                        H.append(h)

            p = min(H, key=lambda h: h.degree())
            zeros = p.ground_roots()

            for zero in zeros:
                if not zero.is_Rational:
                    dom_zero = dom.algebraic_field(zero)
                else:
                    dom_zero = dom

                _solutions.add(((zero,) + values, dom_zero))

        solutions = _solutions

    solutions = list(solutions)

    for i, (solution, _) in enumerate(solutions):
        solutions[i] = solution

    return sorted(solutions)
开发者ID:alhirzel,项目名称:sympy,代码行数:82,代码来源:polysys.py


注:本文中的sympy.polys.groebner函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。