当前位置: 首页>>代码示例>>Python>>正文


Python qapply.qapply函数代码示例

本文整理汇总了Python中sympy.physics.quantum.qapply.qapply函数的典型用法代码示例。如果您正苦于以下问题:Python qapply函数的具体用法?Python qapply怎么用?Python qapply使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了qapply函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_RaisingOp

def test_RaisingOp():
    assert Dagger(ad) == a
    assert Commutator(ad, a).doit() == Integer(-1)
    assert Commutator(ad, N).doit() == Integer(-1)*ad
    assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand()
    assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand()
    assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand()
    assert ad.rewrite('xp').doit() == \
        (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X)
    assert ad.hilbert_space == ComplexSpace(S.Infinity)
    for i in range(ndim - 1):
        assert ad_rep_sympy[i + 1,i] == sqrt(i + 1)

    if not np:
        skip("numpy not installed or Python too old.")

    ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy')
    for i in range(ndim - 1):
        assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1))

    if not np:
        skip("numpy not installed or Python too old.")
    if not scipy:
        skip("scipy not installed.")
    else:
        sparse = scipy.sparse

    ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil')
    for i in range(ndim - 1):
        assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1))

    assert ad_rep_numpy.dtype == 'float64'
    assert ad_rep_scipy.dtype == 'float64'
开发者ID:Acebulf,项目名称:sympy,代码行数:33,代码来源:test_sho1d.py

示例2: test_CMod

def test_CMod():
    assert qapply(CMod(4, 2, 2)*Qubit(0, 0, 1, 0, 0, 0, 0, 0)) == \
        Qubit(0, 0, 1, 0, 0, 0, 0, 0)
    assert qapply(CMod(5, 5, 7)*Qubit(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)) == \
        Qubit(0, 0, 1, 0, 0, 0, 0, 0, 1, 0)
    assert qapply(CMod(3, 2, 3)*Qubit(0, 1, 0, 0, 0, 0)) == \
        Qubit(0, 1, 0, 0, 0, 1)
开发者ID:FireJade,项目名称:sympy,代码行数:7,代码来源:test_shor.py

示例3: test_WGate

def test_WGate():
    nqubits = 2
    basis_states = superposition_basis(nqubits)
    assert qapply(WGate(nqubits)*basis_states) == basis_states

    expected = ((2/sqrt(pow(2, nqubits)))*basis_states) - IntQubit(1, nqubits)
    assert qapply(WGate(nqubits)*IntQubit(1, nqubits)) == expected
开发者ID:A-turing-machine,项目名称:sympy,代码行数:7,代码来源:test_grover.py

示例4: period_find

def period_find(a, N):
    """Finds the period of a in modulo N arithmetic

    This is quantum part of Shor's algorithm.It takes two registers,
    puts first in superposition of states with Hadamards so: ``|k>|0>``
    with k being all possible choices. It then does a controlled mod and
    a QFT to determine the order of a.
    """
    epsilon = .5
    #picks out t's such that maintains accuracy within epsilon
    t = int(2*math.ceil(log(N, 2)))
    # make the first half of register be 0's |000...000>
    start = [0 for x in range(t)]
    #Put second half into superposition of states so we have |1>x|0> + |2>x|0> + ... |k>x>|0> + ... + |2**n-1>x|0>
    factor = 1/sqrt(2**t)
    qubits = 0
    for i in range(2**t):
        qbitArray = arr(i, t) + start
        qubits = qubits + Qubit(*qbitArray)
    circuit = (factor*qubits).expand()
    #Controlled second half of register so that we have:
    # |1>x|a**1 %N> + |2>x|a**2 %N> + ... + |k>x|a**k %N >+ ... + |2**n-1=k>x|a**k % n>
    circuit = CMod(t, a, N)*circuit
    #will measure first half of register giving one of the a**k%N's
    circuit = qapply(circuit)
    print "controlled Mod'd"
    for i in range(t):
        circuit = measure_partial_oneshot(circuit, i)
        # circuit = measure(i)*circuit
    # circuit = qapply(circuit)
    print "measured 1"
    #Now apply Inverse Quantum Fourier Transform on the second half of the register
    circuit = qapply(QFT(t, t*2).decompose()*circuit, floatingPoint=True)
    print "QFT'd"
    for i in range(t):
        circuit = measure_partial_oneshot(circuit, i + t)
        # circuit = measure(i+t)*circuit
    # circuit = qapply(circuit)
    print circuit
    if isinstance(circuit, Qubit):
        register = circuit
    elif isinstance(circuit, Mul):
        register = circuit.args[-1]
    else:
        register = circuit.args[-1].args[-1]

    print register
    n = 1
    answer = 0
    for i in range(len(register)/2):
        answer += n*register[i + t]
        n = n << 1
    if answer == 0:
        raise OrderFindingException(
            "Order finder returned 0. Happens with chance %f" % epsilon)
    #turn answer into r using continued fractions
    g = getr(answer, 2**t, N)
    print g
    return g
开发者ID:jenshnielsen,项目名称:sympy,代码行数:59,代码来源:shor.py

示例5: test_LoweringOp

def test_LoweringOp():
    assert Dagger(a) == ad
    assert Commutator(a, ad).doit() == Integer(1)
    assert Commutator(a, N).doit() == a
    assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand()
    assert qapply(a*kz) == Integer(0)
    assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand()
    assert a().rewrite('xp').doit() == \
        (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X)
开发者ID:Tarang1993,项目名称:sympy,代码行数:9,代码来源:test_sho1d.py

示例6: test_differential_operator

def test_differential_operator():
    x = Symbol('x')
    f = Function('f')
    d = DifferentialOperator(Derivative(f(x), x), f(x))
    g = Wavefunction(x**2, x)
    assert qapply(d*g) == Wavefunction(2*x, x)
    assert d.expr == Derivative(f(x), x)
    assert d.function == f(x)
    assert d.variables == (x,)
    assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 2), f(x))

    d = DifferentialOperator(Derivative(f(x), x, 2), f(x))
    g = Wavefunction(x**3, x)
    assert qapply(d*g) == Wavefunction(6*x, x)
    assert d.expr == Derivative(f(x), x, 2)
    assert d.function == f(x)
    assert d.variables == (x,)
    assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 3), f(x))

    d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
    assert d.expr == 1/x*Derivative(f(x), x)
    assert d.function == f(x)
    assert d.variables == (x,)
    assert diff(d, x) == \
        DifferentialOperator(Derivative(1/x*Derivative(f(x), x), x), f(x))
    assert qapply(d*g) == Wavefunction(3*x, x)

    # 2D cartesian Laplacian
    y = Symbol('y')
    d = DifferentialOperator(Derivative(f(x, y), x, 2) +
                             Derivative(f(x, y), y, 2), f(x, y))
    w = Wavefunction(x**3*y**2 + y**3*x**2, x, y)
    assert d.expr == Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2)
    assert d.function == f(x, y)
    assert d.variables == (x, y)
    assert diff(d, x) == \
        DifferentialOperator(Derivative(d.expr, x), f(x, y))
    assert diff(d, y) == \
        DifferentialOperator(Derivative(d.expr, y), f(x, y))
    assert qapply(d*w) == Wavefunction(2*x**3 + 6*x*y**2 + 6*x**2*y + 2*y**3,
                                       x, y)

    # 2D polar Laplacian (th = theta)
    r, th = symbols('r th')
    d = DifferentialOperator(1/r*Derivative(r*Derivative(f(r, th), r), r) +
                             1/(r**2)*Derivative(f(r, th), th, 2), f(r, th))
    w = Wavefunction(r**2*sin(th), r, (th, 0, pi))
    assert d.expr == \
        1/r*Derivative(r*Derivative(f(r, th), r), r) + \
        1/(r**2)*Derivative(f(r, th), th, 2)
    assert d.function == f(r, th)
    assert d.variables == (r, th)
    assert diff(d, r) == \
        DifferentialOperator(Derivative(d.expr, r), f(r, th))
    assert diff(d, th) == \
        DifferentialOperator(Derivative(d.expr, th), f(r, th))
    assert qapply(d*w) == Wavefunction(3*sin(th), r, (th, 0, pi))
开发者ID:AdrianPotter,项目名称:sympy,代码行数:57,代码来源:test_operator.py

示例7: test_RaisingOp

def test_RaisingOp():
    assert Dagger(ad) == a
    assert Commutator(ad, a).doit() == Integer(-1)
    assert Commutator(ad, N).doit() == Integer(-1)*ad
    assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand()
    assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand()
    assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand()
    assert ad().rewrite('xp').doit() == \
        (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X)
    assert ad.hilbert_space == ComplexSpace(S.Infinity)
开发者ID:Tarang1993,项目名称:sympy,代码行数:10,代码来源:test_sho1d.py

示例8: test_quantum_fourier

def test_quantum_fourier():
    assert QFT(0,3).decompose() == SwapGate(0,2)*HadamardGate(0)*CGate((0,), PhaseGate(1))\
    *HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2))*HadamardGate(2)

    assert IQFT(0,3).decompose() == HadamardGate(2)*CGate((1,), RkGate(2,-2))*CGate((0,),RkGate(2,-3))\
    *HadamardGate(1)*CGate((0,), RkGate(1,-2))*HadamardGate(0)*SwapGate(0,2)

    assert represent(QFT(0,3), nqubits=3)\
     == Matrix([[exp(2*pi*I/8)**(i*j%8)/sqrt(8) for i in range(8)] for j in range(8)])

    assert QFT(0,4).decompose() #non-trivial decomposition
    assert qapply(QFT(0,3).decompose()*Qubit(0,0,0)).expand() ==\
    qapply(HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0,0,0)).expand()
开发者ID:Aang,项目名称:sympy,代码行数:13,代码来源:test_qft.py

示例9: test_cgate

def test_cgate():
    """Test the general CGate."""
    # Test single control functionality
    CNOTMatrix = Matrix(
        [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]])
    assert represent(CGate(1, XGate(0)), nqubits=2) == CNOTMatrix

    # Test multiple control bit functionality
    ToffoliGate = CGate((1, 2), XGate(0))
    assert represent(ToffoliGate, nqubits=3) == \
        Matrix(
            [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
    [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0,
        1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1],
    [0, 0, 0, 0, 0, 0, 1, 0]])

    ToffoliGate = CGate((3, 0), XGate(1))
    assert qapply(ToffoliGate*Qubit('1001')) == \
        matrix_to_qubit(represent(ToffoliGate*Qubit('1001'), nqubits=4))
    assert qapply(ToffoliGate*Qubit('0000')) == \
        matrix_to_qubit(represent(ToffoliGate*Qubit('0000'), nqubits=4))

    CYGate = CGate(1, YGate(0))
    CYGate_matrix = Matrix(
        ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, -I), (0, 0, I, 0)))
    # Test 2 qubit controlled-Y gate decompose method.
    assert represent(CYGate.decompose(), nqubits=2) == CYGate_matrix

    CZGate = CGate(0, ZGate(1))
    CZGate_matrix = Matrix(
        ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, -1)))
    assert qapply(CZGate*Qubit('11')) == -Qubit('11')
    assert matrix_to_qubit(represent(CZGate*Qubit('11'), nqubits=2)) == \
        -Qubit('11')
    # Test 2 qubit controlled-Z gate decompose method.
    assert represent(CZGate.decompose(), nqubits=2) == CZGate_matrix

    CPhaseGate = CGate(0, PhaseGate(1))
    assert qapply(CPhaseGate*Qubit('11')) == \
        I*Qubit('11')
    assert matrix_to_qubit(represent(CPhaseGate*Qubit('11'), nqubits=2)) == \
        I*Qubit('11')

    # Test that the dagger, inverse, and power of CGate is evaluated properly
    assert Dagger(CZGate) == CZGate
    assert pow(CZGate, 1) == Dagger(CZGate)
    assert Dagger(CZGate) == CZGate.inverse()
    assert Dagger(CPhaseGate) != CPhaseGate
    assert Dagger(CPhaseGate) == CPhaseGate.inverse()
    assert Dagger(CPhaseGate) == pow(CPhaseGate, -1)
    assert pow(CPhaseGate, -1) == CPhaseGate.inverse()
开发者ID:A-turing-machine,项目名称:sympy,代码行数:51,代码来源:test_gate.py

示例10: test_identity

def test_identity():
    I = IdentityOperator()
    O = Operator("O")

    assert isinstance(I, IdentityOperator)
    assert isinstance(I, Operator)

    assert I.inv() == I
    assert Dagger(I) == I
    assert qapply(I * O) == O
    assert qapply(O * I) == O

    for n in [2, 3, 5]:
        assert represent(IdentityOperator(n)) == eye(n)
开发者ID:B-Rich,项目名称:sympy,代码行数:14,代码来源:test_operator.py

示例11: test_UGate

def test_UGate():
    a, b, c, d = symbols("a,b,c,d")
    uMat = Matrix([[a, b], [c, d]])

    # Test basic case where gate exists in 1-qubit space
    u1 = UGate((0,), uMat)
    assert represent(u1, nqubits=1) == uMat
    assert qapply(u1 * Qubit("0")) == a * Qubit("0") + c * Qubit("1")
    assert qapply(u1 * Qubit("1")) == b * Qubit("0") + d * Qubit("1")

    # Test case where gate exists in a larger space
    u2 = UGate((1,), uMat)
    u2Rep = represent(u2, nqubits=2)
    for i in range(4):
        assert u2Rep * qubit_to_matrix(IntQubit(i, 2)) == qubit_to_matrix(qapply(u2 * IntQubit(i, 2)))
开发者ID:hector1618,项目名称:sympy,代码行数:15,代码来源:test_gate.py

示例12: _apply_op

 def _apply_op(self, ket, orig_basis, **options):
     state = ket.rewrite(self.basis)
     # If the state has only one term
     if isinstance(state, State):
         return self._apply_operator(state, **options)
     # state is a linear combination of states
     return qapply(self*state).rewrite(orig_basis)
开发者ID:AlexandruFlorescu,项目名称:sympy,代码行数:7,代码来源:spin.py

示例13: test_apply_represent_equality

def test_apply_represent_equality():
    gates = [
        HadamardGate(int(3 * random.random())),
        XGate(int(3 * random.random())),
        ZGate(int(3 * random.random())),
        YGate(int(3 * random.random())),
        ZGate(int(3 * random.random())),
        PhaseGate(int(3 * random.random())),
    ]

    circuit = Qubit(
        int(random.random() * 2),
        int(random.random() * 2),
        int(random.random() * 2),
        int(random.random() * 2),
        int(random.random() * 2),
        int(random.random() * 2),
    )
    for i in range(int(random.random() * 6)):
        circuit = gates[int(random.random() * 6)] * circuit

    mat = represent(circuit, nqubits=6)
    states = qapply(circuit)
    state_rep = matrix_to_qubit(mat)
    states = states.expand()
    state_rep = state_rep.expand()
    assert state_rep == states
开发者ID:ness01,项目名称:sympy,代码行数:27,代码来源:test_qubit.py

示例14: test_Hamiltonian

def test_Hamiltonian():
    assert Commutator(H, N).doit() == Integer(0)
    assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand()
    assert H().rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2))
    assert H().rewrite('xp').doit() == \
        (Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
    assert H().rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2))
开发者ID:Tarang1993,项目名称:sympy,代码行数:7,代码来源:test_sho1d.py

示例15: test_NumberOp

def test_NumberOp():
    assert Commutator(N, ad).doit() == ad
    assert Commutator(N, a).doit() == Integer(-1)*a
    assert Commutator(N, H).doit() == Integer(0)
    assert qapply(N*k) == (k.n*k).expand()
    assert N().rewrite('a').doit() == ad*a
    assert N().rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2)
开发者ID:Tarang1993,项目名称:sympy,代码行数:7,代码来源:test_sho1d.py


注:本文中的sympy.physics.quantum.qapply.qapply函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。