本文整理汇总了Python中sympy.physics.mechanics.ReferenceFrame.orientnew方法的典型用法代码示例。如果您正苦于以下问题:Python ReferenceFrame.orientnew方法的具体用法?Python ReferenceFrame.orientnew怎么用?Python ReferenceFrame.orientnew使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.physics.mechanics.ReferenceFrame
的用法示例。
在下文中一共展示了ReferenceFrame.orientnew方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dcm
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_dcm():
q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q1, N.z])
B = A.orientnew('B', 'Axis', [q2, A.x])
C = B.orientnew('C', 'Axis', [q3, B.y])
D = N.orientnew('D', 'Axis', [q4, N.y])
E = N.orientnew('E', 'Space', [q1, q2, q3], '123')
assert N.dcm(C) == Matrix([
[- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) *
cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], [sin(q1) *
cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * cos(q2), sin(q1) *
sin(q3) - sin(q2) * cos(q1) * cos(q3)], [- sin(q3) * cos(q2), sin(q2),
cos(q2) * cos(q3)]])
# This is a little touchy. Is it ok to use simplify in assert?
assert D.dcm(C) == Matrix(
[[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) +
sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) *
cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * (- sin(q4) *
cos(q2) + sin(q1) * sin(q2) * cos(q4))], [sin(q1) * cos(q3) +
sin(q2) * sin(q3) * cos(q1), cos(q1) * cos(q2), sin(q1) * sin(q3) -
sin(q2) * cos(q1) * cos(q3)], [sin(q4) * cos(q1) * cos(q3) -
sin(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)), sin(q2) *
cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * sin(q4) * cos(q1) +
cos(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4))]])
assert E.dcm(N) == Matrix(
[[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)],
[sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) +
cos(q1)*cos(q3), sin(q1)*cos(q2)], [sin(q1)*sin(q3) +
sin(q2)*cos(q1)*cos(q3), - sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1),
cos(q1)*cos(q2)]])
示例2: test_dcm
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_dcm():
q1, q2, q3, q4 = dynamicsymbols("q1 q2 q3 q4")
N = ReferenceFrame("N")
A = N.orientnew("A", "Axis", [q1, N.z])
B = A.orientnew("B", "Axis", [q2, A.x])
C = B.orientnew("C", "Axis", [q3, B.y])
D = N.orientnew("D", "Axis", [q4, N.y])
E = N.orientnew("E", "Space", [q1, q2, q3], "123")
assert N.dcm(C) == Matrix(
[
[
-sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3),
-sin(q1) * cos(q2),
sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1),
],
[
sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
cos(q1) * cos(q2),
sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3),
],
[-sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)],
]
)
# This is a little touchy. Is it ok to use simplify in assert?
test_mat = D.dcm(C) - Matrix(
[
[
cos(q1) * cos(q3) * cos(q4) - sin(q3) * (-sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)),
-sin(q2) * sin(q4) - sin(q1) * cos(q2) * cos(q4),
sin(q3) * cos(q1) * cos(q4) + cos(q3) * (-sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)),
],
[
sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
cos(q1) * cos(q2),
sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3),
],
[
sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)),
sin(q2) * cos(q4) - sin(q1) * sin(q4) * cos(q2),
sin(q3) * sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)),
],
]
)
assert test_mat.expand() == zeros(3, 3)
assert E.dcm(N) == Matrix(
[
[cos(q2) * cos(q3), sin(q3) * cos(q2), -sin(q2)],
[
sin(q1) * sin(q2) * cos(q3) - sin(q3) * cos(q1),
sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3),
sin(q1) * cos(q2),
],
[
sin(q1) * sin(q3) + sin(q2) * cos(q1) * cos(q3),
-sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
cos(q1) * cos(q2),
],
]
)
示例3: test_partial_velocity
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_partial_velocity():
q1, q2, q3, u1, u2, u3 = dynamicsymbols("q1 q2 q3 u1 u2 u3")
u4, u5 = dynamicsymbols("u4, u5")
r = symbols("r")
N = ReferenceFrame("N")
Y = N.orientnew("Y", "Axis", [q1, N.z])
L = Y.orientnew("L", "Axis", [q2, Y.x])
R = L.orientnew("R", "Axis", [q3, L.y])
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
C = Point("C")
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew("Dmc", r * L.z)
Dmc.v2pt_theory(C, N, R)
vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
u_list = [u1, u2, u3, u4, u5]
assert partial_velocity(vel_list, u_list) == [
[-r * L.y, 0, L.x],
[r * L.x, 0, L.y],
[0, 0, L.z],
[L.x, L.x, 0],
[cos(q2) * L.y - sin(q2) * L.z, cos(q2) * L.y - sin(q2) * L.z, 0],
]
示例4: test_linearize_pendulum_lagrange_minimal
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_linearize_pendulum_lagrange_minimal():
q1 = dynamicsymbols('q1') # angle of pendulum
q1d = dynamicsymbols('q1', 1) # Angular velocity
L, m, t = symbols('L, m, t')
g = 9.8
# Compose world frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
A = N.orientnew('A', 'axis', [q1, N.z])
A.set_ang_vel(N, q1d*N.z)
# Locate point P relative to the origin N*
P = pN.locatenew('P', L*A.x)
P.v2pt_theory(pN, N, A)
pP = Particle('pP', P, m)
# Solve for eom with Lagranges method
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Linearize
A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)
assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
assert B == Matrix([])
示例5: test_linearize_pendulum_lagrange_nonminimal
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_linearize_pendulum_lagrange_nonminimal():
q1, q2 = dynamicsymbols('q1:3')
q1d, q2d = dynamicsymbols('q1:3', level=1)
L, m, t = symbols('L, m, t')
g = 9.8
# Compose World Frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
theta1 = atan(q2/q1)
A = N.orientnew('A', 'axis', [theta1, N.z])
# Create point P, the pendulum mass
P = pN.locatenew('P1', q1*N.x + q2*N.y)
P.set_vel(N, P.pos_from(pN).dt(N))
pP = Particle('pP', P, m)
# Constraint Equations
f_c = Matrix([q1**2 + q2**2 - L**2])
# Calculate the lagrangian, and form the equations of motion
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Compose operating point
op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
# Solve for multiplier operating point
lam_op = LM.solve_multipliers(op_point=op_point)
op_point.update(lam_op)
# Perform the Linearization
A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
op_point=op_point, A_and_B=True)
assert A == Matrix([[0, 1], [-9.8/L, 0]])
assert B == Matrix([])
示例6: test_point_funcs
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_point_funcs():
q, q2 = dynamicsymbols('q q2')
qd, q2d = dynamicsymbols('q q2', 1)
qdd, q2dd = dynamicsymbols('q q2', 2)
N = ReferenceFrame('N')
B = ReferenceFrame('B')
B.set_ang_vel(N, 5 * B.y)
O = Point('O')
P = O.locatenew('P', q * B.x)
assert P.pos_from(O) == q * B.x
P.set_vel(B, qd * B.x + q2d * B.y)
assert P.vel(B) == qd * B.x + q2d * B.y
O.set_vel(N, 0)
assert O.vel(N) == 0
assert P.a1pt_theory(O, N, B) == ((-25 * q + qdd) * B.x + (q2dd) * B.y +
(-10 * qd) * B.z)
B = N.orientnew('B', 'Axis', [q, N.z])
O = Point('O')
P = O.locatenew('P', 10 * B.x)
O.set_vel(N, 5 * N.x)
assert O.vel(N) == 5 * N.x
assert P.a2pt_theory(O, N, B) == (-10 * qd**2) * B.x + (10 * qdd) * B.y
B.set_ang_vel(N, 5 * B.y)
O = Point('O')
P = O.locatenew('P', q * B.x)
P.set_vel(B, qd * B.x + q2d * B.y)
O.set_vel(N, 0)
assert P.v1pt_theory(O, N, B) == qd * B.x + q2d * B.y - 5 * q * B.z
示例7: test_pendulum_angular_momentum
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_pendulum_angular_momentum():
"""Consider a pendulum of length OA = 2a, of mass m as a rigid body of
center of mass G (OG = a) which turn around (O,z). The angle between the
reference frame R and the rod is q. The inertia of the body is I =
(G,0,ma^2/3,ma^2/3). """
m, a = symbols('m, a')
q = dynamicsymbols('q')
R = ReferenceFrame('R')
R1 = R.orientnew('R1', 'Axis', [q, R.z])
R1.set_ang_vel(R, q.diff() * R.z)
I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)
O = Point('O')
A = O.locatenew('A', 2*a * R1.x)
G = O.locatenew('G', a * R1.x)
S = RigidBody('S', G, R1, m, (I, G))
O.set_vel(R, 0)
A.v2pt_theory(O, R, R1)
G.v2pt_theory(O, R, R1)
assert (4 * m * a**2 / 3 * q.diff() * R.z -
S.angular_momentum(O, R).express(R)) == 0
示例8: test_aux
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_aux():
# Same as above, except we have 2 auxiliary speeds for the ground contact
# point, which is known to be zero. In one case, we go through then
# substitute the aux. speeds in at the end (they are zero, as well as their
# derivative), in the other case, we use the built-in auxiliary speed part
# of Kane. The equations from each should be the same.
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
u4d, u5d = dynamicsymbols('u4, u5', 1)
r, m, g = symbols('r m g')
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^
R.ang_vel_in(N)))
C = Point('C')
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
Dmc.a2pt_theory(C, N, R)
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
BodyD = RigidBody()
BodyD.mc = Dmc
BodyD.inertia = (I, Dmc)
BodyD.frame = R
BodyD.mass = m
BodyList = [BodyD]
KM = Kane(N)
KM.coords([q1, q2, q3])
KM.speeds([u1, u2, u3, u4, u5])
KM.kindiffeq(kd)
kdd = KM.kindiffdict()
(fr, frstar) = KM.kanes_equations(ForceList, BodyList)
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
KM2 = Kane(N)
KM2.coords([q1, q2, q3])
KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5])
KM2.kindiffeq(kd)
(fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
assert fr.expand() == fr2.expand()
assert frstar.expand() == frstar2.expand()
示例9: test_rolling_disc
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_rolling_disc():
# Rolling Disc Example
# Here the rolling disc is formed from the contact point up, removing the
# need to introduce generalized speeds. Only 3 configuration and 3
# speed variables are need to describe this system, along with the
# disc's mass and radius, and the local gravity.
q1, q2, q3 = dynamicsymbols('q1 q2 q3')
q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
r, m, g = symbols('r m g')
# The kinematics are formed by a series of simple rotations. Each simple
# rotation creates a new frame, and the next rotation is defined by the new
# frame's basis vectors. This example uses a 3-1-2 series of rotations, or
# Z, X, Y series of rotations. Angular velocity for this is defined using
# the second frame's basis (the lean frame).
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
# This is the translational kinematics. We create a point with no velocity
# in N; this is the contact point between the disc and ground. Next we form
# the position vector from the contact point to the disc's center of mass.
# Finally we form the velocity and acceleration of the disc.
C = Point('C')
C.set_vel(N, 0)
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
# Forming the inertia dyadic.
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
# Finally we form the equations of motion, using the same steps we did
# before. Supply the Lagrangian, the generalized speeds.
BodyD.set_potential_energy(- m * g * r * cos(q2))
Lag = Lagrangian(N, BodyD)
q = [q1, q2, q3]
q1 = Function('q1')
q2 = Function('q2')
q3 = Function('q3')
l = LagrangesMethod(Lag, q)
l.form_lagranges_equations()
RHS = l.rhs()
RHS.simplify()
t = symbols('t')
assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0])
assert RHS[4].simplify() == (-8*g*sin(q2(t)) + 5*r*sin(2*q2(t)
)*Derivative(q1(t), t)**2 + 12*r*cos(q2(t))*Derivative(q1(t), t
)*Derivative(q3(t), t))/(10*r)
assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t)
)*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t))
)*Derivative(q2(t), t)
示例10: test_point_pos
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_point_pos():
q = dynamicsymbols('q')
N = ReferenceFrame('N')
B = N.orientnew('B', 'Axis', [q, N.z])
O = Point('O')
P = O.locatenew('P', 10 * N.x + 5 * B.x)
assert P.pos_from(O) == 10 * N.x + 5 * B.x
Q = P.locatenew('Q', 10 * N.y + 5 * B.y)
assert Q.pos_from(P) == 10 * N.y + 5 * B.y
assert Q.pos_from(O) == 10 * N.x + 10 * N.y + 5 * B.x + 5 * B.y
assert O.pos_from(Q) == -10 * N.x - 10 * N.y - 5 * B.x - 5 * B.y
示例11: test_aux
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_aux():
# Same as above, except we have 2 auxiliary speeds for the ground contact
# point, which is known to be zero. In one case, we go through then
# substitute the aux. speeds in at the end (they are zero, as well as their
# derivative), in the other case, we use the built-in auxiliary speed part
# of KanesMethod. The equations from each should be the same.
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
u4d, u5d = dynamicsymbols('u4, u5', 1)
r, m, g = symbols('r m g')
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
w_R_N_qd = R.ang_vel_in(N)
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
C = Point('C')
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
Dmc.a2pt_theory(C, N, R)
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
BodyList = [BodyD]
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
kd_eqs=kd)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
(fr, frstar) = KM.kanes_equations(ForceList, BodyList)
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
u_auxiliary=[u4, u5])
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
(fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar.simplify()
frstar2.simplify()
assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
示例12: test_point_a2pt_theorys
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_point_a2pt_theorys():
q = dynamicsymbols('q')
qd = dynamicsymbols('q', 1)
qdd = dynamicsymbols('q', 2)
N = ReferenceFrame('N')
B = N.orientnew('B', 'Axis', [q, N.z])
O = Point('O')
P = O.locatenew('P', 0)
O.set_vel(N, 0)
assert P.a2pt_theory(O, N, B) == 0
P.set_pos(O, B.x)
assert P.a2pt_theory(O, N, B) == (-qd**2) * B.x + (qdd) * B.y
示例13: test_point_v2pt_theorys
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_point_v2pt_theorys():
q = dynamicsymbols('q')
qd = dynamicsymbols('q', 1)
N = ReferenceFrame('N')
B = N.orientnew('B', 'Axis', [q, N.z])
O = Point('O')
P = O.locatenew('P', 0)
O.set_vel(N, 0)
assert P.v2pt_theory(O, N, B) == 0
P = O.locatenew('P', B.x)
assert P.v2pt_theory(O, N, B) == (qd * B.z ^ B.x)
O.set_vel(N, N.x)
assert P.v2pt_theory(O, N, B) == N.x + qd * B.y
示例14: get_equations
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def get_equations(m_val, g_val, l_val):
# This function body is copyied from:
# http://www.pydy.org/examples/double_pendulum.html
# Retrieved 2015-09-29
from sympy import symbols
from sympy.physics.mechanics import (
dynamicsymbols, ReferenceFrame, Point, Particle, KanesMethod
)
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
u1, u2 = dynamicsymbols('u1 u2')
u1d, u2d = dynamicsymbols('u1 u2', 1)
l, m, g = symbols('l m g')
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q1, N.z])
B = N.orientnew('B', 'Axis', [q2, N.z])
A.set_ang_vel(N, u1 * N.z)
B.set_ang_vel(N, u2 * N.z)
O = Point('O')
P = O.locatenew('P', l * A.x)
R = P.locatenew('R', l * B.x)
O.set_vel(N, 0)
P.v2pt_theory(O, N, A)
R.v2pt_theory(P, N, B)
ParP = Particle('ParP', P, m)
ParR = Particle('ParR', R, m)
kd = [q1d - u1, q2d - u2]
FL = [(P, m * g * N.x), (R, m * g * N.x)]
BL = [ParP, ParR]
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
(fr, frstar) = KM.kanes_equations(FL, BL)
kdd = KM.kindiffdict()
mm = KM.mass_matrix_full
fo = KM.forcing_full
qudots = mm.inv() * fo
qudots = qudots.subs(kdd)
qudots.simplify()
# Edit:
depv = [q1, q2, u1, u2]
subs = list(zip([m, g, l], [m_val, g_val, l_val]))
return zip(depv, [expr.subs(subs) for expr in qudots])
示例15: test_disc_on_an_incline_plane
# 需要导入模块: from sympy.physics.mechanics import ReferenceFrame [as 别名]
# 或者: from sympy.physics.mechanics.ReferenceFrame import orientnew [as 别名]
def test_disc_on_an_incline_plane():
# Disc rolling on an inclined plane
# First the generalized coordinates are created. The mass center of the
# disc is located from top vertex of the inclined plane by the generalized
# coordinate 'y'. The orientation of the disc is defined by the angle
# 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of
# the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the
# gravitational constant.
y, theta = dynamicsymbols('y theta')
yd, thetad = dynamicsymbols('y theta', 1)
m, g, R, l, alpha = symbols('m g R l alpha')
# Next, we create the inertial reference frame 'N'. A reference frame 'A'
# is attached to the inclined plane. Finally a frame is created which is attached to the disk.
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z])
B = A.orientnew('B', 'Axis', [-theta, A.z])
# Creating the disc 'D'; we create the point that represents the mass
# center of the disc and set its velocity. The inertia dyadic of the disc
# is created. Finally, we create the disc.
Do = Point('Do')
Do.set_vel(N, yd * A.x)
I = m * R**2 / 2 * B.z | B.z
D = RigidBody('D', Do, B, m, (I, Do))
# To construct the Lagrangian, 'L', of the disc, we determine its kinetic
# and potential energies, T and U, respectively. L is defined as the
# difference between T and U.
D.set_potential_energy(m * g * (l - y) * sin(alpha))
L = Lagrangian(N, D)
# We then create the list of generalized coordinates and constraint
# equations. The constraint arises due to the disc rolling without slip on
# on the inclined path. Also, the constraint is holonomic but we supply the
# differentiated holonomic equation as the 'LagrangesMethod' class requires
# that. We then invoke the 'LagrangesMethod' class and supply it the
# necessary arguments and generate the equations of motion. The'rhs' method
# solves for the q_double_dots (i.e. the second derivative with respect to
# time of the generalized coordinates and the lagrange multiplers.
q = [y, theta]
coneq = [yd - R * thetad]
m = LagrangesMethod(L, q, coneq)
m.form_lagranges_equations()
rhs = m.rhs()
rhs.simplify()
assert rhs[2] == 2*g*sin(alpha)/3