当前位置: 首页>>代码示例>>Python>>正文


Python LagrangesMethod.linearize方法代码示例

本文整理汇总了Python中sympy.physics.mechanics.LagrangesMethod.linearize方法的典型用法代码示例。如果您正苦于以下问题:Python LagrangesMethod.linearize方法的具体用法?Python LagrangesMethod.linearize怎么用?Python LagrangesMethod.linearize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.physics.mechanics.LagrangesMethod的用法示例。


在下文中一共展示了LagrangesMethod.linearize方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_linearize_pendulum_lagrange_minimal

# 需要导入模块: from sympy.physics.mechanics import LagrangesMethod [as 别名]
# 或者: from sympy.physics.mechanics.LagrangesMethod import linearize [as 别名]
def test_linearize_pendulum_lagrange_minimal():
    q1 = dynamicsymbols('q1')                     # angle of pendulum
    q1d = dynamicsymbols('q1', 1)                 # Angular velocity
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    A = N.orientnew('A', 'axis', [q1, N.z])
    A.set_ang_vel(N, q1d*N.z)

    # Locate point P relative to the origin N*
    P = pN.locatenew('P', L*A.x)
    P.v2pt_theory(pN, N, A)
    pP = Particle('pP', P, m)

    # Solve for eom with Lagranges method
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()

    # Linearize
    A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)

    assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:32,代码来源:test_linearize.py

示例2: test_linearize_pendulum_lagrange_nonminimal

# 需要导入模块: from sympy.physics.mechanics import LagrangesMethod [as 别名]
# 或者: from sympy.physics.mechanics.LagrangesMethod import linearize [as 别名]
def test_linearize_pendulum_lagrange_nonminimal():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Compose operating point
    op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
    # Solve for multiplier operating point
    lam_op = LM.solve_multipliers(op_point=op_point)
    op_point.update(lam_op)
    # Perform the Linearization
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
            op_point=op_point, A_and_B=True)
    assert A == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])
开发者ID:Festy,项目名称:sympy,代码行数:34,代码来源:test_linearize.py

示例3: test_linearize_rolling_disc_lagrange

# 需要导入模块: from sympy.physics.mechanics import LagrangesMethod [as 别名]
# 或者: from sympy.physics.mechanics.LagrangesMethod import linearize [as 别名]
def test_linearize_rolling_disc_lagrange():
    q1, q2, q3 = q = dynamicsymbols("q1 q2 q3")
    q1d, q2d, q3d = qd = dynamicsymbols("q1 q2 q3", 1)
    r, m, g = symbols("r m g")

    N = ReferenceFrame("N")
    Y = N.orientnew("Y", "Axis", [q1, N.z])
    L = Y.orientnew("L", "Axis", [q2, Y.x])
    R = L.orientnew("R", "Axis", [q3, L.y])

    C = Point("C")
    C.set_vel(N, 0)
    Dmc = C.locatenew("Dmc", r * L.z)
    Dmc.v2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r ** 2, m / 2 * r ** 2, m / 4 * r ** 2)
    BodyD = RigidBody("BodyD", Dmc, R, m, (I, Dmc))
    BodyD.potential_energy = -m * g * r * cos(q2)

    Lag = Lagrangian(N, BodyD)
    l = LagrangesMethod(Lag, q)
    l.form_lagranges_equations()

    # Linearize about steady-state upright rolling
    op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0}
    A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0]
    sol = Matrix(
        [
            [0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 1, 0],
            [0, 0, 0, 0, 0, 1],
            [0, 0, 0, 0, -6 * q3d, 0],
            [0, -4 * g / (5 * r), 0, 6 * q3d / 5, 0, 0],
            [0, 0, 0, 0, 0, 0],
        ]
    )

    assert A == sol
开发者ID:guanlongtianzi,项目名称:sympy,代码行数:40,代码来源:test_linearize.py


注:本文中的sympy.physics.mechanics.LagrangesMethod.linearize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。