本文整理汇总了Python中sympy.physics.mechanics.KanesMethod.to_linearizer方法的典型用法代码示例。如果您正苦于以下问题:Python KanesMethod.to_linearizer方法的具体用法?Python KanesMethod.to_linearizer怎么用?Python KanesMethod.to_linearizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.physics.mechanics.KanesMethod
的用法示例。
在下文中一共展示了KanesMethod.to_linearizer方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_linearize_rolling_disc_kane
# 需要导入模块: from sympy.physics.mechanics import KanesMethod [as 别名]
# 或者: from sympy.physics.mechanics.KanesMethod import to_linearizer [as 别名]
def test_linearize_rolling_disc_kane():
# Symbols for time and constant parameters
t, r, m, g, v = symbols('t r m g v')
# Configuration variables and their time derivatives
q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7')
q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q]
# Generalized speeds and their time derivatives
u = dynamicsymbols('u:6')
u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7')
u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u]
# Reference frames
N = ReferenceFrame('N') # Inertial frame
NO = Point('NO') # Inertial origin
A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame
B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame
C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame
CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center
# Disc angular velocity in N expressed using time derivatives of coordinates
w_c_n_qd = C.ang_vel_in(N)
w_b_n_qd = B.ang_vel_in(N)
# Inertial angular velocity and angular acceleration of disc fixed frame
C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z)
# Disc center velocity in N expressed using time derivatives of coordinates
v_co_n_qd = CO.pos_from(NO).dt(N)
# Disc center velocity in N expressed using generalized speeds
CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z)
# Disc Ground Contact Point
P = CO.locatenew('P', r*B.z)
P.v2pt_theory(CO, N, C)
# Configuration constraint
f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)])
# Velocity level constraints
f_v = Matrix([dot(P.vel(N), uv) for uv in C])
# Kinematic differential equations
kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
[dot(v_co_n_qd - CO.vel(N), uv) for uv in N])
qdots = solve(kindiffs, qd)
# Set angular velocity of remaining frames
B.set_ang_vel(N, w_b_n_qd.subs(qdots))
C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))
# Active forces
F_CO = m*g*A.z
# Create inertia dyadic of disc C about point CO
I = (m * r**2) / 4
J = (m * r**2) / 2
I_C_CO = inertia(C, I, J, I)
Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO))
BL = [Disc]
FL = [(CO, F_CO)]
KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs,
q_dependent=[q6], configuration_constraints=f_c,
u_dependent=[u4, u5, u6], velocity_constraints=f_v)
(fr, fr_star) = KM.kanes_equations(FL, BL)
# Test generalized form equations
linearizer = KM.to_linearizer()
assert linearizer.f_c == f_c
assert linearizer.f_v == f_v
assert linearizer.f_a == f_v.diff(t)
sol = solve(linearizer.f_0 + linearizer.f_1, qd)
for qi in qd:
assert sol[qi] == qdots[qi]
assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0])
# Perform the linearization
# Precomputed operating point
q_op = {q6: -r*cos(q2)}
u_op = {u1: 0,
u2: sin(q2)*q1d + q3d,
u3: cos(q2)*q1d,
u4: -r*(sin(q2)*q1d + q3d)*cos(q3),
u5: 0,
u6: -r*(sin(q2)*q1d + q3d)*sin(q3)}
qd_op = {q2d: 0,
q4d: -r*(sin(q2)*q1d + q3d)*cos(q1),
q5d: -r*(sin(q2)*q1d + q3d)*sin(q1),
q6d: 0}
ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5,
u2d: 0,
u3d: 0,
u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2),
u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5),
u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)}
A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True)
#.........这里部分代码省略.........