当前位置: 首页>>代码示例>>Python>>正文


Python ntheory.is_primitive_root函数代码示例

本文整理汇总了Python中sympy.ntheory.is_primitive_root函数的典型用法代码示例。如果您正苦于以下问题:Python is_primitive_root函数的具体用法?Python is_primitive_root怎么用?Python is_primitive_root使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了is_primitive_root函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_residue

def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6

    assert is_primitive_root(2, 7) == False
    assert is_primitive_root(3, 8) == False
    assert is_primitive_root(11, 14) == False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)

    assert is_quad_residue(3, 7) == False
    assert is_quad_residue(10, 13) == True
    assert is_quad_residue(12364, 139) == is_quad_residue(132, 139)
    assert is_quad_residue(207, 251) == True

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, 'legendre_symbol(2, 4)')

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    raises(ValueError, 'jacobi_symbol(3, 8)')
开发者ID:ArchKaine,项目名称:sympy,代码行数:30,代码来源:test_ntheory.py

示例2: test_residue

def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))
开发者ID:jenshnielsen,项目名称:sympy,代码行数:44,代码来源:test_ntheory.py

示例3: test_residue

def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6

    assert is_primitive_root(2, 7) == False
    assert is_primitive_root(3, 8) == False
    assert is_primitive_root(11, 14) == False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)

    assert is_quad_residue(3, 7) == False
    assert is_quad_residue(10, 13) == True
    assert is_quad_residue(12364, 139) == is_quad_residue(132, 139)
    assert is_quad_residue(207, 251) == True

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
开发者ID:hitej,项目名称:meta-core,代码行数:20,代码来源:test_ntheory.py

示例4: get_random_primitive_root

    def get_random_primitive_root(self):
        while True:
            val = random.randint(self._prime // (2 * 2), (self._prime - 1) // 2) * 2 - 1
            if not (val % 3 and val % 5):
                continue

            if igcd(val, self._prime) != 1:
                continue

            if is_primitive_root(val, self._prime):
                return val
开发者ID:mazanax,项目名称:steganography,代码行数:11,代码来源:models.py

示例5: test_elgamal_private_key

def test_elgamal_private_key():
    a, b, _ = elgamal_private_key(digit=100)
    assert isprime(a)
    assert is_primitive_root(b, a)
    assert len(bin(a)) >= 102
开发者ID:AdrianPotter,项目名称:sympy,代码行数:5,代码来源:test_crypto.py

示例6: test_dh_private_key

def test_dh_private_key():
    p, g, _ = dh_private_key(digit = 100)
    assert isprime(p)
    assert is_primitive_root(g, p)
    assert len(bin(p)) >= 102
开发者ID:asmeurer,项目名称:sympy,代码行数:5,代码来源:test_crypto.py

示例7: test_residue

def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
#.........这里部分代码省略.........
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:101,代码来源:test_ntheory.py

示例8: test_residue

def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(S.One) == [0]
    assert quadratic_residues(1) == [0]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
#.........这里部分代码省略.........
开发者ID:asmeurer,项目名称:sympy,代码行数:101,代码来源:test_residue.py

示例9: sym_prim_root

 def sym_prim_root(value):
     return [x for x in range(1, value - 1) if
             igcd(x, value) == 1 and is_primitive_root(x, value)]
开发者ID:mazanax,项目名称:steganography,代码行数:3,代码来源:models.py


注:本文中的sympy.ntheory.is_primitive_root函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。