本文整理汇总了Python中sympy.mpmath.libmp.mpf_mul函数的典型用法代码示例。如果您正苦于以下问题:Python mpf_mul函数的具体用法?Python mpf_mul怎么用?Python mpf_mul使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mpf_mul函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: npartitions
def npartitions(n, verbose=False):
"""
Calculate the partition function P(n), i.e. the number of ways that
n can be written as a sum of positive integers.
P(n) is computed using the Hardy-Ramanujan-Rademacher formula,
described e.g. at http://mathworld.wolfram.com/PartitionFunctionP.html
The correctness of this implementation has been tested for 10**n
up to n = 8.
"""
n = int(n)
if n < 0: return 0
if n <= 5: return [1, 1, 2, 3, 5, 7][n]
# Estimate number of bits in p(n). This formula could be tidied
pbits = int((math.pi*(2*n/3.)**0.5-math.log(4*n))/math.log(10)+1)*\
math.log(10,2)
prec = p = int(pbits*1.1 + 100)
s = fzero
M = max(6, int(0.24*n**0.5+4))
sq23pi = mpf_mul(mpf_sqrt(from_rational(2,3,p), p), mpf_pi(p), p)
sqrt8 = mpf_sqrt(from_int(8), p)
for q in xrange(1, M):
a = A(n,q,p)
d = D(n,q,p, sq23pi, sqrt8)
s = mpf_add(s, mpf_mul(a, d), prec)
if verbose:
print "step", q, "of", M, to_str(a, 10), to_str(d, 10)
# On average, the terms decrease rapidly in magnitude. Dynamically
# reducing the precision greatly improves performance.
p = bitcount(abs(to_int(d))) + 50
np = to_int(mpf_add(s, fhalf, prec))
return int(np)
示例2: _d
def _d(n, j, prec, sq23pi, sqrt8):
"""
Compute the sinh term in the outer sum of the HRR formula.
The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
"""
j = from_int(j)
pi = mpf_pi(prec)
a = mpf_div(sq23pi, j, prec)
b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
c = mpf_sqrt(b, prec)
ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
return mpf_mul(D, E)
示例3: evalf_mul
#.........这里部分代码省略.........
special = []
for arg in args:
arg = evalf(arg, prec, options)
if arg[0] is None:
continue
arg = C.Float._new(arg[0], 1)
if arg is S.NaN or arg.is_unbounded:
special.append(arg)
if special:
from sympy.core.mul import Mul
special = Mul(*special)
return evalf(special, prec + 4, {})
# With guard digits, multiplication in the real case does not destroy
# accuracy. This is also true in the complex case when considering the
# total accuracy; however accuracy for the real or imaginary parts
# separately may be lower.
acc = prec
# XXX: big overestimate
working_prec = prec + len(args) + 5
# Empty product is 1
start = man, exp, bc = MPZ(1), 0, 1
# First, we multiply all pure real or pure imaginary numbers.
# direction tells us that the result should be multiplied by
# I**direction; all other numbers get put into complex_factors
# to be multiplied out after the first phase.
last = len(args)
direction = 0
args.append(S.One)
complex_factors = []
for i, arg in enumerate(args):
if i != last and pure_complex(arg):
args[-1] = (args[-1] * arg).expand()
continue
elif i == last and arg is S.One:
continue
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
if re and im:
complex_factors.append((re, im, re_acc, im_acc))
continue
elif re:
(s, m, e, b), w_acc = re, re_acc
elif im:
(s, m, e, b), w_acc = im, im_acc
direction += 1
else:
return None, None, None, None
direction += 2 * s
man *= m
exp += e
bc += b
if bc > 3 * working_prec:
man >>= working_prec
exp += working_prec
acc = min(acc, w_acc)
sign = (direction & 2) >> 1
if not complex_factors:
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
# multiply by i
if direction & 1:
return None, v, None, acc
else:
return v, None, acc, None
else:
# initialize with the first term
if (man, exp, bc) != start:
# there was a real part; give it an imaginary part
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
i0 = 0
else:
# there is no real part to start (other than the starting 1)
wre, wim, wre_acc, wim_acc = complex_factors[0]
acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc)))
re = wre
im = wim
i0 = 1
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
# acc is the overall accuracy of the product; we aren't
# computing exact accuracies of the product.
acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc)))
use_prec = working_prec
A = mpf_mul(re, wre, use_prec)
B = mpf_mul(mpf_neg(im), wim, use_prec)
C = mpf_mul(re, wim, use_prec)
D = mpf_mul(im, wre, use_prec)
re = mpf_add(A, B, use_prec)
im = mpf_add(C, D, use_prec)
if options.get("verbose"):
print "MUL: wanted", prec, "accurate bits, got", acc
# multiply by I
if direction & 1:
re, im = mpf_neg(im), re
return re, im, acc, acc
示例4: evalf_mul
def evalf_mul(v, prec, options):
args = v.args
# With guard digits, multiplication in the real case does not destroy
# accuracy. This is also true in the complex case when considering the
# total accuracy; however accuracy for the real or imaginary parts
# separately may be lower.
acc = prec
target_prec = prec
# XXX: big overestimate
prec = prec + len(args) + 5
direction = 0
# Empty product is 1
man, exp, bc = MPZ(1), 0, 1
direction = 0
complex_factors = []
# First, we multiply all pure real or pure imaginary numbers.
# direction tells us that the result should be multiplied by
# i**direction
for arg in args:
re, im, re_acc, im_acc = evalf(arg, prec, options)
if re and im:
complex_factors.append((re, im, re_acc, im_acc))
continue
elif re:
(s, m, e, b), w_acc = re, re_acc
elif im:
(s, m, e, b), w_acc = im, im_acc
direction += 1
else:
return None, None, None, None
direction += 2*s
man *= m
exp += e
bc += b
if bc > 3*prec:
man >>= prec
exp += prec
acc = min(acc, w_acc)
sign = (direction & 2) >> 1
v = normalize(sign, man, exp, bitcount(man), prec, round_nearest)
if complex_factors:
# make existing real scalar look like an imaginary and
# multiply by the remaining complex numbers
re, im = v, (0, MPZ(0), 0, 0)
for wre, wim, wre_acc, wim_acc in complex_factors:
# acc is the overall accuracy of the product; we aren't
# computing exact accuracies of the product.
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
A = mpf_mul(re, wre, prec)
B = mpf_mul(mpf_neg(im), wim, prec)
C = mpf_mul(re, wim, prec)
D = mpf_mul(im, wre, prec)
re, xre_acc = add_terms([(A, acc), (B, acc)], prec, target_prec)
im, xim_acc = add_terms([(C, acc), (D, acc)], prec, target_prec)
if options.get('verbose'):
print "MUL: wanted", target_prec, "accurate bits, got", acc
# multiply by i
if direction & 1:
return mpf_neg(im), re, acc, acc
else:
return re, im, acc, acc
else:
# multiply by i
if direction & 1:
return None, v, None, acc
else:
return v, None, acc, None
示例5: __mul__
def __mul__(self, other):
if isinstance(other, Number):
rhs, prec = other._as_mpf_op(self._prec)
return Real._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
return Number.__mul__(self, other)
示例6: _make_tol
def _make_tol(ctx):
hundred = (0, 25, 2, 5)
eps = (0, MPZ_ONE, 1-ctx.prec, 1)
return mpf_mul(hundred, eps)