本文整理汇总了Python中sympy.holonomic.HolonomicFunction.subs方法的典型用法代码示例。如果您正苦于以下问题:Python HolonomicFunction.subs方法的具体用法?Python HolonomicFunction.subs怎么用?Python HolonomicFunction.subs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.holonomic.HolonomicFunction
的用法示例。
在下文中一共展示了HolonomicFunction.subs方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_series
# 需要导入模块: from sympy.holonomic import HolonomicFunction [as 别名]
# 或者: from sympy.holonomic.HolonomicFunction import subs [as 别名]
def test_series():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx**2 + 2*x*Dx, x, 0, [0, 1]).series(n=10)
q = x - x**3/3 + x**5/10 - x**7/42 + x**9/216 + O(x**10)
assert p == q
p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # cos(x)
r = (p * q).series(n=10) # expansion of cos(x) * exp(x**2)
s = 1 + x**2/2 + x**4/24 - 31*x**6/720 - 179*x**8/8064 + O(x**10)
assert r == s
t = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # log(1 + x)
r = (p * t + q).series(n=10)
s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\
71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10)
assert r == s
p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
(4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7)
q = x + x**3/6 - 3*x**4/16 + x**5/20 - 23*x**6/960 + O(x**7)
assert p == q
p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
(4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7)
q = 1 - 3*x**2/4 - x**3/4 - 5*x**4/32 - 3*x**5/40 - 17*x**6/384 + O(x**7)
assert p == q
p = expr_to_holonomic(erf(x) + x).series(n=10)
C_3 = symbols('C_3')
q = (erf(x) + x).series(n=10)
assert p.subs(C_3, -2/(3*sqrt(pi))) == q
assert expr_to_holonomic(sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10)
assert expr_to_holonomic((2*x - 3*x**2)**(S(1)/3)).series() == ((2*x - 3*x**2)**(S(1)/3)).series()
assert expr_to_holonomic(sqrt(x**2-x)).series() == (sqrt(x**2-x)).series()
assert expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).series(n=10) == (cos(x)**2/x**2).series(n=10)
assert expr_to_holonomic(cos(x)**2/x**2, x0=1).series(n=10) == (cos(x)**2/x**2).series(n=10, x0=1)
assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \
== (cos(x-1)**2/(x-1)**2).series(x0=1, n=10)