当前位置: 首页>>代码示例>>Python>>正文


Python geometry.Ellipse类代码示例

本文整理汇总了Python中sympy.geometry.Ellipse的典型用法代码示例。如果您正苦于以下问题:Python Ellipse类的具体用法?Python Ellipse怎么用?Python Ellipse使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Ellipse类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_ellipse_random_point

def test_ellipse_random_point():
    e3 = Ellipse(Point(0, 0), y1, y1)
    rx, ry = Symbol("rx"), Symbol("ry")
    for ind in xrange(0, 5):
        r = e3.random_point()
        # substitution should give zero*y1**2
        assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
开发者ID:flacjacket,项目名称:sympy,代码行数:7,代码来源:test_geometry.py

示例2: test_reflect

def test_reflect():
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length
    assert test_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert t.area == -t.reflect(l).area
    e = Ellipse((1, 0), 1, 2)
    assert e.area == -e.reflect(Line((1, 0), slope=0)).area
    assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
    raises(NotImplementedError, lambda: e.reflect(Line((1,0), slope=m)))
    # test entity overrides
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area
    pent = RegularPolygon((1, 2), 1, 5)
    l = Line((0, pi), slope=sqrt(2))
    rpent = pent.reflect(l)
    poly_pent = Polygon(*pent.vertices)
    assert rpent.center == pent.center.reflect(l)
    assert str([w.n(3) for w in rpent.vertices]) == (
        '[Point(-0.586, 4.27), Point(-1.69, 4.66), '
        'Point(-2.41, 3.73), Point(-1.74, 2.76), '
        'Point(-0.616, 3.10)]')
    assert pent.area.equals(-rpent.area)
开发者ID:Acebulf,项目名称:sympy,代码行数:30,代码来源:test_geometry.py

示例3: test_auxiliary_circle

def test_auxiliary_circle():
    x, y, a, b = symbols('x y a b')
    e = Ellipse((x, y), a, b)
    # the general result
    assert e.auxiliary_circle() == Circle((x, y), Max(a, b))
    # a special case where Ellipse is a Circle
    assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8)
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:7,代码来源:test_ellipse.py

示例4: main

def main():

    O = Point(0, 0)
    p0 = Point(0, 10.1)
    p1 = Point(1.4, -9.6)
    m = p0.midpoint(p1)
    X = Line(O, Point(10, 0))
    Y = Line(O, Point(0, 10))

    ellipse = Ellipse(Point(0, 0), 5 , 10)
    sortie = Segment(Point(-0.01, 10), Point(0.01, 10))

    ray = Ray(m, p1)

    reflections = 0
    
    while not sortie.intersection(ray) and reflections < 5:
        targets = ellipse.intersection(ray)
        print " Targets: ", targets
        origin = next_origin(ray.p1, targets)
        tangents = ellipse.tangent_lines(origin)
        if len(tangents) > 1:
            print("Error computing intersection")
            break
        tangent = tangents.pop()
        alpha = next_angle(ray, tangent, (X, Y))
        reflections += 1
        ray = Ray(origin, angle=alpha)
        print "Reflections :", reflections
开发者ID:icot,项目名称:euler,代码行数:29,代码来源:p144.py

示例5: test_director_circle

def test_director_circle():
    x, y, a, b = symbols('x y a b')
    e = Ellipse((x, y), a, b)
    # the general result
    assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
    # a special case where Ellipse is a Circle
    assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:7,代码来源:test_ellipse.py

示例6: test_ellipse_random_point

def test_ellipse_random_point():
    e3 = Ellipse(Point(0, 0), y1, y1)
    rx, ry = Symbol('rx'), Symbol('ry')
    for ind in xrange(0, 5):
        r = e3.random_point()
        # substitution should give zero*y1**2
        assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)
                                        ).n(3).as_coeff_Mul()[0] < 1e-10
开发者ID:Misbah6317,项目名称:sympy,代码行数:8,代码来源:test_geometry.py

示例7: test_ellipse_random_point

def test_ellipse_random_point():
    y1 = Symbol('y1', real=True)
    e3 = Ellipse(Point(0, 0), y1, y1)
    rx, ry = Symbol('rx'), Symbol('ry')
    for ind in range(0, 5):
        r = e3.random_point()
        # substitution should give zero*y1**2
        assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:8,代码来源:test_ellipse.py

示例8: test_reflect

def test_reflect():
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    t1 = Triangle((0, 0), (1, 0), (2, 3))
    assert t1.area == -t1.reflect(l).area
    e = Ellipse((1, 0), 1, 2)
    assert e.area == -e.reflect(Line((1, 0), slope=0)).area
    assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
    raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:10,代码来源:test_ellipse.py

示例9: test_second_moment_of_area

def test_second_moment_of_area():
    x, y = symbols('x, y')
    e = Ellipse(Point(0, 0), 5, 4)
    I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5
    I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4
    Y = 3*sqrt(1 - x**2/5**2)
    I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5))
    assert I_yy == e.second_moment_of_area()[1]
    assert I_xx == e.second_moment_of_area()[0]
    assert I_xy == e.second_moment_of_area()[2]
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:10,代码来源:test_ellipse.py

示例10: test_ellipse_equation_using_slope

def test_ellipse_equation_using_slope():
    from sympy.abc import x, y

    e1 = Ellipse(Point(1, 0), 3, 2)
    assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1)

    e2 = Ellipse(Point(0, 0), 4, 1)
    assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1)

    e3 = Ellipse(Point(1, 5), 6, 2)
    assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1)
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:11,代码来源:test_ellipse.py

示例11: test_ellipse

def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x2)
    p4 = Point(0, 1)
    p5 = Point(-1, 0)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2,1)
    c3 = Circle(Point(sqrt(2),sqrt(2)),1)

    # Test creation with three points
    cen,rad = Point(3*half, 2), 5*half
    assert Circle(Point(0,0), Point(3,0), Point(0,4)) == Circle(cen, rad)
    raises(GeometryError, "Circle(Point(0,0), Point(1,1), Point(2,2))")

    # Basic Stuff
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*(y1**2)
    assert c1.area == e1.area
    assert c1.circumference == 2*pi

    assert e2.arbitrary_point() in e2
    for ind in xrange(0, 5):
        assert e3.random_point() in e3

    # Foci
    f1,f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_line(p4) == c1.tangent_line(p4)
    assert e2.tangent_line(p1_2) == Line(p1_2, p2 + Point(half, 1))
    assert e2.tangent_line(p1_3) == Line(p1_3, p2 + Point(half, 1))
    assert c1.tangent_line(p1_1) == Line(p1_1, Point(0, sqrt(2)))
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) in [[(1,0), (0,1)],[(0,1),(1,0)]]
    assert intersection(c1, c3) == [(sqrt(2)/2, sqrt(2)/2)]

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v/2, v/2) in points
    assert Point(v/2, -v/2) in points

    e1 = Circle(Point(0, 0), 5)
    e2 = Ellipse(Point(0, 0), 5, 20)
    assert intersection(e1, e2) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]

    # Combinations of above
    assert e3.is_tangent(e3.tangent_line(p1 + Point(y1, 0)))
开发者ID:KevinGoodsell,项目名称:sympy,代码行数:84,代码来源:test_geometry.py

示例12: test_ellipse

def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    # Test creation with three points
    cen, rad = Point(3 * half, 2), 5 * half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * (y1 ** 2)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2 * pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) == False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) == True
    assert e1.encloses(Line(p1, p2)) == False
    assert e1.encloses(Ray(p1, p2)) == False
    assert e1.encloses(e1) == False
    assert e1.encloses(Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) == True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) == True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) == False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) == False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol("M")
    m = Symbol("m")
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4 * M * C.Integral(sqrt((1 - _x ** 2 * (M ** 2 - m ** 2) / M ** 2) / (1 - _x ** 2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))]
    assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))]
    assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False
    assert c1.is_tangent(e1) == False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) == True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) == True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) == False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == [
        Line(Point(0, 0), Point(S(77) / 25, S(132) / 25)),
        Line(Point(0, 0), Point(S(33) / 5, S(22) / 5)),
    ]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == [
        Line(Point(3, 4), Point(4, 4)),
        Line(Point(3, 4), Point(3, 5)),
    ]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == [
        Line(Point(3, 3), Point(4, 3)),
#.........这里部分代码省略.........
开发者ID:flacjacket,项目名称:sympy,代码行数:101,代码来源:test_geometry.py

示例13: test_ellipse

def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x2)
    p4 = Point(0, 1)
    p5 = Point(-1, 0)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2,1)
    c3 = Circle(Point(sqrt(2),sqrt(2)),1)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0,0), Point(3,0), Point(0,4)) == Circle(cen, rad)
    raises(GeometryError, "Circle(Point(0,0), Point(1,1), Point(2,2))")

    # Basic Stuff
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*(y1**2)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == \
        4*M*C.Integral(sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))]
    assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))]
    assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))]
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
    [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
     Line(Point(0, 0), Point(S(33)/5, S(22)/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
    [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
    [Line(Point(3, 3), Point(3, 5)), Line(Point(3, 3), Point(5, 3))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
    [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))),]

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
#.........这里部分代码省略.........
开发者ID:Grahack,项目名称:geophar,代码行数:101,代码来源:test_geometry.py

示例14: test_ellipse

def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x2)
    p4 = Point(0, 1)
    p5 = Point(-1, 0)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2,1)
    c3 = Circle(Point(sqrt(2),sqrt(2)),1)

    # Test creation with three points
    cen,rad = Point(3*half, 2), 5*half
    assert Circle(Point(0,0), Point(3,0), Point(0,4)) == Circle(cen, rad)
    raises(GeometryError, "Circle(Point(0,0), Point(1,1), Point(2,2))")

    # Basic Stuff
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*(y1**2)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1

    a = Symbol('a')
    b = Symbol('b')
    e5 = Ellipse(p1, a, b)
    assert e5.circumference == 4*a*C.Integral(((1 - x**2*Abs(b**2 - a**2)/a**2)/(1 - x**2))**(S(1)/2),\
                                            (x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1,f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_line(p4) == c1.tangent_line(p4)
    assert e2.tangent_line(p1_2) == Line(p1_2, p2 + Point(half, 1))
    assert e2.tangent_line(p1_3) == Line(p1_3, p2 + Point(half, 1))
    assert c1.tangent_line(p1_1) == Line(p1_1, Point(0, sqrt(2)))
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) in [[(1,0), (0,1)],[(0,1),(1,0)]]
    assert intersection(c1, c3) == [(sqrt(2)/2, sqrt(2)/2)]

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v/2, v/2) in points
    assert Point(v/2, -v/2) in points

    e1 = Circle(Point(0, 0), 5)
    e2 = Ellipse(Point(0, 0), 5, 20)
    assert intersection(e1, e2) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]

    # FAILING ELLIPSE INTERSECTION GOES HERE

#.........这里部分代码省略.........
开发者ID:pernici,项目名称:sympy,代码行数:101,代码来源:test_geometry.py

示例15: test_ellipse_geom

def test_ellipse_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
    l1 = Line(p1, p2)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]

    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    assert Ellipse((1, 1), 0, 0) == Point(1, 1)
    assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
    assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(Point(S(3)/2, 1), Point(S(3)/2, S(1)/2))]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(S(5)/4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is True
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
#.........这里部分代码省略.........
开发者ID:oscarbenjamin,项目名称:sympy,代码行数:101,代码来源:test_ellipse.py


注:本文中的sympy.geometry.Ellipse类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。