本文整理汇总了Python中sympy.functions.special.bessel.besselj函数的典型用法代码示例。如果您正苦于以下问题:Python besselj函数的具体用法?Python besselj怎么用?Python besselj使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了besselj函数的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_requires_partial
def test_requires_partial():
x, y, z, t, nu = symbols('x y z t nu')
n = symbols('n', integer=True)
f = x * y
assert requires_partial(Derivative(f, x)) is True
assert requires_partial(Derivative(f, y)) is True
## integrating out one of the variables
assert requires_partial(Derivative(Integral(exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False
## bessel function with smooth parameter
f = besselj(nu, x)
assert requires_partial(Derivative(f, x)) is True
assert requires_partial(Derivative(f, nu)) is True
## bessel function with integer parameter
f = besselj(n, x)
assert requires_partial(Derivative(f, x)) is False
# this is not really valid (differentiating with respect to an integer)
# but there's no reason to use the partial derivative symbol there. make
# sure we don't throw an exception here, though
assert requires_partial(Derivative(f, n)) is False
## bell polynomial
f = bell(n, x)
assert requires_partial(Derivative(f, x)) is False
# again, invalid
assert requires_partial(Derivative(f, n)) is False
## legendre polynomial
f = legendre(0, x)
assert requires_partial(Derivative(f, x)) is False
f = legendre(n, x)
assert requires_partial(Derivative(f, x)) is False
# again, invalid
assert requires_partial(Derivative(f, n)) is False
f = x ** n
assert requires_partial(Derivative(f, x)) is False
assert requires_partial(Derivative(Integral((x*y) ** n * exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False
# parametric equation
f = (exp(t), cos(t))
g = sum(f)
assert requires_partial(Derivative(g, t)) is False
f = symbols('f', cls=Function)
assert requires_partial(Derivative(f(x), x)) is False
assert requires_partial(Derivative(f(x), y)) is False
assert requires_partial(Derivative(f(x, y), x)) is True
assert requires_partial(Derivative(f(x, y), y)) is True
assert requires_partial(Derivative(f(x, y), z)) is True
assert requires_partial(Derivative(f(x, y), x, y)) is True
示例2: test_latex_bessel
def test_latex_bessel():
from sympy.functions.special.bessel import besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn
from sympy.abc import z
assert latex(besselj(n, z ** 2) ** k) == r"J^{k}_{n}\left(z^{2}\right)"
assert latex(bessely(n, z)) == r"Y_{n}\left(z\right)"
assert latex(besseli(n, z)) == r"I_{n}\left(z\right)"
assert latex(besselk(n, z)) == r"K_{n}\left(z\right)"
assert latex(hankel1(n, z ** 2) ** 2) == r"\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}"
assert latex(hankel2(n, z)) == r"H^{(2)}_{n}\left(z\right)"
assert latex(jn(n, z)) == r"j_{n}\left(z\right)"
assert latex(yn(n, z)) == r"y_{n}\left(z\right)"
示例3: test_latex_bessel
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2, jn, yn)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
示例4: test_sympy__functions__special__bessel__besselj
def test_sympy__functions__special__bessel__besselj():
from sympy.functions.special.bessel import besselj
assert _test_args(besselj(x, 1))