当前位置: 首页>>代码示例>>Python>>正文


Python function.sympify函数代码示例

本文整理汇总了Python中sympy.core.function.sympify函数的典型用法代码示例。如果您正苦于以下问题:Python sympify函数的具体用法?Python sympify怎么用?Python sympify使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了sympify函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: to_cnf

def to_cnf(expr, simplify=False):
    """
    Convert a propositional logical sentence s to conjunctive normal form.
    That is, of the form ((A | ~B | ...) & (B | C | ...) & ...)

    Examples
    ========

    >>> from sympy.logic.boolalg import to_cnf
    >>> from sympy.abc import A, B, D
    >>> to_cnf(~(A | B) | D)
    And(Or(D, Not(A)), Or(D, Not(B)))

    """
    expr = sympify(expr)
    if not isinstance(expr, BooleanFunction):
        return expr

    if simplify:
        simplified_expr = distribute_and_over_or(simplify_logic(expr))
        if len(simplified_expr.args) < len(to_cnf(expr).args):
            return simplified_expr
        else:
            return to_cnf(expr)

    # Don't convert unless we have to
    if is_cnf(expr):
        return expr

    expr = eliminate_implications(expr)
    return distribute_and_over_or(expr)
开发者ID:Acebulf,项目名称:sympy,代码行数:31,代码来源:boolalg.py

示例2: to_dnf

def to_dnf(expr, simplify=False):
    """
    Convert a propositional logical sentence s to disjunctive normal form.
    That is, of the form ((A & ~B & ...) | (B & C & ...) | ...)

    Examples
    ========

    >>> from sympy.logic.boolalg import to_dnf
    >>> from sympy.abc import A, B, C, D
    >>> to_dnf(B & (A | C))
    Or(And(A, B), And(B, C))

    """
    expr = sympify(expr)
    if not isinstance(expr, BooleanFunction):
        return expr

    if simplify:
        simplified_expr = distribute_or_over_and(simplify_logic(expr))
        if len(simplified_expr.args) < len(to_dnf(expr).args):
            return simplified_expr
        else:
            return to_dnf(expr)

    # Don't convert unless we have to
    if is_dnf(expr):
        return expr

    expr = eliminate_implications(expr)
    return distribute_or_over_and(expr)
开发者ID:Acebulf,项目名称:sympy,代码行数:31,代码来源:boolalg.py

示例3: eliminate_implications

def eliminate_implications(expr):
    """
    Change >>, <<, and Equivalent into &, |, and ~. That is, return an
    expression that is equivalent to s, but has only &, |, and ~ as logical
    operators.

    Examples
    ========

    >>> from sympy.logic.boolalg import Implies, Equivalent, \
         eliminate_implications
    >>> from sympy.abc import A, B, C
    >>> eliminate_implications(Implies(A, B))
    Or(B, Not(A))
    >>> eliminate_implications(Equivalent(A, B))
    And(Or(A, Not(B)), Or(B, Not(A)))
    """
    expr = sympify(expr)
    if expr.is_Atom:
        return expr  # (Atoms are unchanged.)
    args = map(eliminate_implications, expr.args)
    if expr.func is Implies:
        a, b = args[0], args[-1]
        return (~a) | b
    elif expr.func is Equivalent:
        a, b = args[0], args[-1]
        return (a | Not(b)) & (b | Not(a))
    else:
        return expr.func(*args)
开发者ID:ashuven63,项目名称:sympy,代码行数:29,代码来源:boolalg.py

示例4: test_symbolify__decimals

 def test_symbolify__decimals(self):
     """Tests presence of decimal in value to be evaluated.
     """
     query_args = {'filter_string': 'AF > 0.5'}
     evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
     EXPECTED_SYMBOLIC_REP = sympify('A')
     self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
     self.assertEqual('AF > 0.5',
             evaluator.symbol_to_expression_map['A'])
开发者ID:woodymit,项目名称:millstone,代码行数:9,代码来源:test_materialized_variant_filter.py

示例5: test_variant_filter_constructor

    def test_variant_filter_constructor(self):
        """Tests the constructor.
        """
        query_args = {'filter_string': 'position > 5'}
        evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
        EXPECTED_SYMBOLIC_REP = sympify('A')
        self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
        self.assertEqual('position > 5',
                evaluator.symbol_to_expression_map['A'])

        query_args = {'filter_string': 'position>5 & GT= 2'}
        evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
        EXPECTED_SYMBOLIC_REP = sympify('A & B')
        self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
        self.assertEqual('position>5 ',
                evaluator.symbol_to_expression_map['A'])
        self.assertEqual('GT= 2',
                evaluator.symbol_to_expression_map['B'])
开发者ID:woodymit,项目名称:millstone,代码行数:18,代码来源:test_materialized_variant_filter.py

示例6: compile_rule

def compile_rule(s):
    """
    Transforms a rule into a SymPy expression
    A rule is a string of the form "symbol1 & symbol2 | ..."

    Note: This function is deprecated.  Use sympify() instead.

    """
    import re
    return sympify(re.sub(r'([a-zA-Z_][a-zA-Z0-9_]*)', r'Symbol("\1")', s))
开发者ID:Acebulf,项目名称:sympy,代码行数:10,代码来源:boolalg.py

示例7: test_variant_filter_constructor

    def test_variant_filter_constructor(self):
        """Tests the constructor.
        """
        query_args = {'filter_string': 'position > 5'}
        evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
        EXPECTED_SYMBOLIC_REP = sympify('A')
        self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
        self.assertEqual('position > 5',
                evaluator.symbol_to_expression_map['A'])

        # Test &.
        query_args = {'filter_string': 'position>5 & GT= 2'}
        evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
        EXPECTED_SYMBOLIC_REP = sympify('A & B')
        self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
        self.assertEqual('position>5 ',
                evaluator.symbol_to_expression_map['A'])
        self.assertEqual('GT= 2',
                evaluator.symbol_to_expression_map['B'])

        # Test decimals.
        query_args = {'filter_string': 'AF > 0.5'}
        evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
        EXPECTED_SYMBOLIC_REP = sympify('A')
        self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
        self.assertEqual('AF > 0.5',
                evaluator.symbol_to_expression_map['A'])

        # Test hyphens
        QUERY = 'EXPERIMENT_SAMPLE_LABEL = C-E5-2'
        query_args = {'filter_string': QUERY}
        evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
        EXPECTED_SYMBOLIC_REP = sympify('A')
        self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
        self.assertEqual(QUERY, evaluator.symbol_to_expression_map['A'])

        # Test quotes
        QUERY = 'EXPERIMENT_SAMPLE_LABEL = "C-E5-2"'
        query_args = {'filter_string': QUERY}
        evaluator = VariantFilterEvaluator(query_args, self.ref_genome)
        EXPECTED_SYMBOLIC_REP = sympify('A')
        self.assertEqual(EXPECTED_SYMBOLIC_REP, evaluator.sympy_representation)
        self.assertEqual(QUERY, evaluator.symbol_to_expression_map['A'])
开发者ID:churchlab,项目名称:millstone,代码行数:43,代码来源:test_materialized_variant_filter.py

示例8: POSform

def POSform(variables, minterms, dontcares=None):
    """
    The POSform function uses simplified_pairs and a redundant-group
    eliminating algorithm to convert the list of all input combinations
    that generate '1' (the minterms) into the smallest Product of Sums form.

    The variables must be given as the first argument.

    Return a logical And function (i.e., the "product of sums" or "POS"
    form) that gives the desired outcome. If there are inputs that can
    be ignored, pass them as a list, too.

    The result will be one of the (perhaps many) functions that satisfy
    the conditions.

    Examples
    ========

    >>> from sympy.logic import POSform
    >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
    ...             [1, 0, 1, 1], [1, 1, 1, 1]]
    >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    >>> POSform(['w','x','y','z'], minterms, dontcares)
    And(Or(Not(w), y), z)

    References
    ==========

    .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm

    """
    from sympy.core.symbol import Symbol

    variables = [sympify(v) for v in variables]
    if minterms == []:
        return False

    minterms = [list(i) for i in minterms]
    dontcares = [list(i) for i in (dontcares or [])]
    for d in dontcares:
        if d in minterms:
            raise ValueError('%s in minterms is also in dontcares' % d)

    maxterms = []
    for t in product([0, 1], repeat=len(variables)):
        t = list(t)
        if (t not in minterms) and (t not in dontcares):
            maxterms.append(t)
    old = None
    new = maxterms + dontcares
    while new != old:
        old = new
        new = _simplified_pairs(old)
    essential = _rem_redundancy(new, maxterms)
    return And(*[_convert_to_varsPOS(x, variables) for x in essential])
开发者ID:HeinerKirchhoffer,项目名称:sympy,代码行数:55,代码来源:boolalg.py

示例9: is_cnf

def is_cnf(expr):
    """
    Test whether or not an expression is in conjunctive normal form.

    Examples
    ========

    >>> from sympy.logic.boolalg import is_cnf
    >>> from sympy.abc import A, B, C
    >>> is_cnf(A | B | C)
    True
    >>> is_cnf(A & B & C)
    True
    >>> is_cnf((A & B) | C)
    False

    """
    expr = sympify(expr)

    # Special case of a single disjunction
    if expr.func is Or:
        for lit in expr.args:
            if lit.func is Not:
                if not lit.args[0].is_Atom:
                    return False
            else:
                if not lit.is_Atom:
                    return False
        return True

    # Special case of a single negation
    if expr.func is Not:
        if not expr.args[0].is_Atom:
            return False

    if expr.func is not And:
        return False

    for cls in expr.args:
        if cls.is_Atom:
            continue
        if cls.func is Not:
            if not cls.args[0].is_Atom:
                return False
        elif cls.func is not Or:
            return False
        for lit in cls.args:
            if lit.func is Not:
                if not lit.args[0].is_Atom:
                    return False
            else:
                if not lit.is_Atom:
                    return False

    return True
开发者ID:ashuven63,项目名称:sympy,代码行数:55,代码来源:boolalg.py

示例10: POSform

def POSform(variables, minterms, dontcares=[]):
    """
    The POSform function uses simplified_pairs and a redundant-group
    eliminating algorithm to convert the list of all input combinations
    that generate '1' (the minterms) into the smallest Product of Sums form.

    The variables must be given as the first argument.

    Return a logical And function (i.e., the "product of sums" or "POS"
    form) that gives the desired outcome. If there are inputs that can
    be ignored, pass them as a list too.

    The result will be one of the (perhaps many) functions that satisfy
    the conditions.

    Examples
    ========

    >>> from sympy.logic import POSform
    >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
    ...             [1, 0, 1, 1], [1, 1, 1, 1]]
    >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    >>> POSform(['w','x','y','z'], minterms, dontcares)
    And(Or(Not(w), y), z)

    References
    ==========

    .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm

    """
    variables = [str(v) for v in variables]
    from sympy.core.compatibility import bin
    if minterms == []:
        return False
    t = [0] * len(variables)
    maxterms = []
    for x in range(2 ** len(variables)):
        b = [int(y) for y in bin(x)[2:]]
        t[-len(b):] = b
        if (t not in minterms) and (t not in dontcares):
            maxterms.append(t[:])
    l2 = [1]
    l1 = maxterms + dontcares
    while (l1 != l2):
        l1 = _simplified_pairs(l1)
        l2 = _simplified_pairs(l1)
    string = _rem_redundancy(l1, maxterms, variables, 2)
    if string == '':
        return True
    return sympify(string)
开发者ID:archipleago-creature,项目名称:sympy,代码行数:51,代码来源:boolalg.py

示例11: SOPform

def SOPform(variables, minterms, dontcares=None):
    """
    The SOPform function uses simplified_pairs and a redundant group-
    eliminating algorithm to convert the list of all input combos that
    generate '1' (the minterms) into the smallest Sum of Products form.

    The variables must be given as the first argument.

    Return a logical Or function (i.e., the "sum of products" or "SOP"
    form) that gives the desired outcome. If there are inputs that can
    be ignored, pass them as a list, too.

    The result will be one of the (perhaps many) functions that satisfy
    the conditions.

    Examples
    ========

    >>> from sympy.logic import SOPform
    >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
    ...             [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
    >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    >>> SOPform(['w','x','y','z'], minterms, dontcares)
    Or(And(Not(w), z), And(y, z))

    References
    ==========

    .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm

    """
    from sympy.core.symbol import Symbol

    variables = [sympify(v) for v in variables]
    if minterms == []:
        return False

    minterms = [list(i) for i in minterms]
    dontcares = [list(i) for i in (dontcares or [])]
    for d in dontcares:
        if d in minterms:
            raise ValueError('%s in minterms is also in dontcares' % d)

    old = None
    new = minterms + dontcares
    while new != old:
        old = new
        new = _simplified_pairs(old)
    essential = _rem_redundancy(new, minterms)
    return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
开发者ID:HeinerKirchhoffer,项目名称:sympy,代码行数:50,代码来源:boolalg.py

示例12: to_cnf

def to_cnf(expr):
    """Convert a propositional logical sentence s to conjunctive normal form.
    That is, of the form ((A | ~B | ...) & (B | C | ...) & ...)

    Examples:

        >>> from sympy.logic.boolalg import to_cnf
        >>> from sympy.abc import A, B, D
        >>> to_cnf(~(A | B) | D)
        And(Or(D, Not(A)), Or(D, Not(B)))

    """
    expr = sympify(expr)
    expr = eliminate_implications(expr)
    return distribute_and_over_or(expr)
开发者ID:goriccardo,项目名称:sympy,代码行数:15,代码来源:boolalg.py

示例13: _is_form

def _is_form(expr, function1, function2):
    """
    Test whether or not an expression is of the required form.

    """
    expr = sympify(expr)

    # Special case of an Atom
    if expr.is_Atom:
        return True

    # Special case of a single expression of function2
    if expr.func is function2:
        for lit in expr.args:
            if lit.func is Not:
                if not lit.args[0].is_Atom:
                    return False
            else:
                if not lit.is_Atom:
                    return False
        return True

    # Special case of a single negation
    if expr.func is Not:
        if not expr.args[0].is_Atom:
            return False

    if expr.func is not function1:
        return False

    for cls in expr.args:
        if cls.is_Atom:
            continue
        if cls.func is Not:
            if not cls.args[0].is_Atom:
                return False
        elif cls.func is not function2:
            return False
        for lit in cls.args:
            if lit.func is Not:
                if not lit.args[0].is_Atom:
                    return False
            else:
                if not lit.is_Atom:
                    return False

    return True
开发者ID:Acebulf,项目名称:sympy,代码行数:47,代码来源:boolalg.py

示例14: eliminate_implications

def eliminate_implications(expr):
    """Change >>, <<, and Equivalent into &, |, and ~. That is, return an
    expression that is equivalent to s, but has only &, |, and ~ as logical
    operators.
    """
    expr = sympify(expr)
    if expr.is_Atom:
        return expr     ## (Atoms are unchanged.)
    args = map(eliminate_implications, expr.args)
    if expr.func is Implies:
        a, b = args[0], args[-1]
        return (~a) | b
    elif expr.func is Equivalent:
        a, b = args[0], args[-1]
        return (a | Not(b)) & (b | Not(a))
    else:
        return expr.func(*args)
开发者ID:bibile,项目名称:sympy,代码行数:17,代码来源:boolalg.py

示例15: SOPform

def SOPform(variables, minterms, dontcares=[]):
    """
    The SOPform function uses simplified_pairs and a redundant group-
    eliminating algorithm to convert the list of all input combos that
    generate '1'(the minterms) into the smallest Sum of Products form.

    The variables must be given as the first argument.

    Return a logical Or function (i.e., the "sum of products" or "SOP"
    form) that gives the desired outcome. If there are inputs that can
    be ignored, pass them as a list too.

    The result will be one of the (perhaps many) functions that satisfy
    the conditions.

    Examples
    ========

    >>> from sympy.logic import SOPform
    >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
    ...             [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
    >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    >>> SOPform(['w','x','y','z'], minterms, dontcares)
        Or(And(Not(w), z), And(y, z))

    References
    ==========

    .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm

    """
    variables = [str(v) for v in variables]
    if minterms == []:
        return False
    l2 = [1]
    l1 = minterms + dontcares
    while (l1 != l2):
        l1 = _simplified_pairs(l1)
        l2 = _simplified_pairs(l1)
    string = _rem_redundancy(l1, minterms, variables, 1)
    if string == '':
        return True
    return sympify(string)
开发者ID:archipleago-creature,项目名称:sympy,代码行数:43,代码来源:boolalg.py


注:本文中的sympy.core.function.sympify函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。