本文整理汇总了Python中sympy.core.backend.symbols函数的典型用法代码示例。如果您正苦于以下问题:Python symbols函数的具体用法?Python symbols怎么用?Python symbols使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了symbols函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_n_link_pendulum_on_cart_inputs
def test_n_link_pendulum_on_cart_inputs():
l0, m0 = symbols("l0 m0")
m1 = symbols("m1")
g = symbols("g")
q0, q1, F, T1 = dynamicsymbols("q0 q1 F T1")
u0, u1 = dynamicsymbols("u0 u1")
kane1 = models.n_link_pendulum_on_cart(1)
massmatrix1 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(2)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0])
kane2 = models.n_link_pendulum_on_cart(1, False)
massmatrix2 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing2 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix2 - kane2.mass_matrix) == zeros(2)
assert simplify(forcing2 - kane2.forcing) == Matrix([0, 0])
kane3 = models.n_link_pendulum_on_cart(1, False, True)
massmatrix3 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing3 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1) + T1]])
assert simplify(massmatrix3 - kane3.mass_matrix) == zeros(2)
assert simplify(forcing3 - kane3.forcing) == Matrix([0, 0])
kane4 = models.n_link_pendulum_on_cart(1, True, False)
massmatrix4 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
[-l0*m1*cos(q1), l0**2*m1]])
forcing4 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
assert simplify(massmatrix4 - kane4.mass_matrix) == zeros(2)
assert simplify(forcing4 - kane4.forcing) == Matrix([0, 0])
示例2: test_multi_mass_spring_damper_inputs
def test_multi_mass_spring_damper_inputs():
c0, k0, m0 = symbols("c0 k0 m0")
g = symbols("g")
v0, x0, f0 = dynamicsymbols("v0 x0 f0")
kane1 = models.multi_mass_spring_damper(1)
massmatrix1 = Matrix([[m0]])
forcing1 = Matrix([[-c0*v0 - k0*x0]])
assert simplify(massmatrix1 - kane1.mass_matrix) == Matrix([0])
assert simplify(forcing1 - kane1.forcing) == Matrix([0])
kane2 = models.multi_mass_spring_damper(1, True)
massmatrix2 = Matrix([[m0]])
forcing2 = Matrix([[-c0*v0 + g*m0 - k0*x0]])
assert simplify(massmatrix2 - kane2.mass_matrix) == Matrix([0])
assert simplify(forcing2 - kane2.forcing) == Matrix([0])
kane3 = models.multi_mass_spring_damper(1, True, True)
massmatrix3 = Matrix([[m0]])
forcing3 = Matrix([[-c0*v0 + g*m0 - k0*x0 + f0]])
assert simplify(massmatrix3 - kane3.mass_matrix) == Matrix([0])
assert simplify(forcing3 - kane3.forcing) == Matrix([0])
kane4 = models.multi_mass_spring_damper(1, False, True)
massmatrix4 = Matrix([[m0]])
forcing4 = Matrix([[-c0*v0 - k0*x0 + f0]])
assert simplify(massmatrix4 - kane4.mass_matrix) == Matrix([0])
assert simplify(forcing4 - kane4.forcing) == Matrix([0])
示例3: test_n_link_pendulum_on_cart_higher_order
def test_n_link_pendulum_on_cart_higher_order():
l0, m0 = symbols("l0 m0")
l1, m1 = symbols("l1 m1")
m2 = symbols("m2")
g = symbols("g")
q0, q1, q2 = dynamicsymbols("q0 q1 q2")
u0, u1, u2 = dynamicsymbols("u0 u1 u2")
F, T1 = dynamicsymbols("F T1")
kane1 = models.n_link_pendulum_on_cart(2)
massmatrix1 = Matrix([[m0 + m1 + m2, -l0*m1*cos(q1) - l0*m2*cos(q1),
-l1*m2*cos(q2)],
[-l0*m1*cos(q1) - l0*m2*cos(q1), l0**2*m1 + l0**2*m2,
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2))],
[-l1*m2*cos(q2),
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2)),
l1**2*m2]])
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) - l0*m2*u1**2*sin(q1) -
l1*m2*u2**2*sin(q2) + F],
[g*l0*m1*sin(q1) + g*l0*m2*sin(q1) -
l0*l1*m2*(sin(q1)*cos(q2) - sin(q2)*cos(q1))*u2**2],
[g*l1*m2*sin(q2) - l0*l1*m2*(-sin(q1)*cos(q2) +
sin(q2)*cos(q1))*u1**2]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
示例4: test_parallel_axis
def test_parallel_axis():
# This is for a 2 dof inverted pendulum on a cart.
# This tests the parallel axis code in KanesMethod. The inertia of the
# pendulum is defined about the hinge, not about the center of mass.
# Defining the constants and knowns of the system
gravity = symbols('g')
k, ls = symbols('k ls')
a, mA, mC = symbols('a mA mC')
F = dynamicsymbols('F')
Ix, Iy, Iz = symbols('Ix Iy Iz')
# Declaring the Generalized coordinates and speeds
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
u1, u2 = dynamicsymbols('u1 u2')
u1d, u2d = dynamicsymbols('u1 u2', 1)
# Creating reference frames
N = ReferenceFrame('N')
A = ReferenceFrame('A')
A.orient(N, 'Axis', [-q2, N.z])
A.set_ang_vel(N, -u2 * N.z)
# Origin of Newtonian reference frame
O = Point('O')
# Creating and Locating the positions of the cart, C, and the
# center of mass of the pendulum, A
C = O.locatenew('C', q1 * N.x)
Ao = C.locatenew('Ao', a * A.y)
# Defining velocities of the points
O.set_vel(N, 0)
C.set_vel(N, u1 * N.x)
Ao.v2pt_theory(C, N, A)
Cart = Particle('Cart', C, mC)
Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))
# kinematical differential equations
kindiffs = [q1d - u1, q2d - u2]
bodyList = [Cart, Pendulum]
forceList = [(Ao, -N.y * gravity * mA),
(C, -N.y * gravity * mC),
(C, -N.x * k * (q1 - ls)),
(C, N.x * F)]
km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
(fr, frstar) = km.kanes_equations(forceList, bodyList)
mm = km.mass_matrix_full
assert mm[3, 3] == Iz
示例5: test_input_format
def test_input_format():
# 1 dof problem from test_one_dof
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
# test for input format kane.kanes_equations((body1, body2, particle1))
assert KM.kanes_equations(BL)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2))
assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None)
assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0])
# test for input format kane.kanes_equations(bodies=(body1, body 2))
assert KM.kanes_equations(BL)[0] == Matrix([0])
# test for error raised when a wrong force list (in this case a string) is provided
from sympy.utilities.pytest import raises
raises(ValueError, lambda: KM._form_fr('bad input'))
# 2 dof problem from test_two_dof
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
kd = [q1d - u1, q2d - u2]
FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x))
pa1 = Particle('pa1', P1, m)
pa2 = Particle('pa2', P2, m)
BL = (pa1, pa2)
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
# test for input format
# kane.kanes_equations((body1, body2), (load1, load2))
KM.kanes_equations(BL, FL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
示例6: test_inertia
def test_inertia():
N = ReferenceFrame('N')
ixx, iyy, izz = symbols('ixx iyy izz')
ixy, iyz, izx = symbols('ixy iyz izx')
assert inertia(N, ixx, iyy, izz) == (ixx * (N.x | N.x) + iyy *
(N.y | N.y) + izz * (N.z | N.z))
assert inertia(N, 0, 0, 0) == 0 * (N.x | N.x)
assert inertia(N, ixx, iyy, izz, ixy, iyz, izx) == (ixx * (N.x | N.x) +
ixy * (N.x | N.y) + izx * (N.x | N.z) + ixy * (N.y | N.x) + iyy *
(N.y | N.y) + iyz * (N.y | N.z) + izx * (N.z | N.x) + iyz * (N.z |
N.y) + izz * (N.z | N.z))
示例7: test_default
def test_default():
body = Body('body')
assert body.name == 'body'
assert body.loads == []
point = Point('body_masscenter')
point.set_vel(body.frame, 0)
com = body.masscenter
frame = body.frame
assert com.vel(frame) == point.vel(frame)
assert body.mass == Symbol('body_mass')
ixx, iyy, izz = symbols('body_ixx body_iyy body_izz')
ixy, iyz, izx = symbols('body_ixy body_iyz body_izx')
assert body.inertia == (inertia(body.frame, ixx, iyy, izz, ixy, iyz, izx),
body.masscenter)
示例8: test_linearize_pendulum_lagrange_nonminimal
def test_linearize_pendulum_lagrange_nonminimal():
q1, q2 = dynamicsymbols('q1:3')
q1d, q2d = dynamicsymbols('q1:3', level=1)
L, m, t = symbols('L, m, t')
g = 9.8
# Compose World Frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
theta1 = atan(q2/q1)
A = N.orientnew('A', 'axis', [theta1, N.z])
# Create point P, the pendulum mass
P = pN.locatenew('P1', q1*N.x + q2*N.y)
P.set_vel(N, P.pos_from(pN).dt(N))
pP = Particle('pP', P, m)
# Constraint Equations
f_c = Matrix([q1**2 + q2**2 - L**2])
# Calculate the lagrangian, and form the equations of motion
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Compose operating point
op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
# Solve for multiplier operating point
lam_op = LM.solve_multipliers(op_point=op_point)
op_point.update(lam_op)
# Perform the Linearization
A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
op_point=op_point, A_and_B=True)
assert A == Matrix([[0, 1], [-9.8/L, 0]])
assert B == Matrix([])
示例9: test_one_dof
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the KanesMethod docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle('pa', P, m)
BL = [pa]
KM = KanesMethod(N, [q], [u], kd)
# The old input format raises a deprecation warning, so catch it here so
# it doesn't cause py.test to fail.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert simplify(KM.rhs() -
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
示例10: dynamicsymbols
def dynamicsymbols(names, level=0):
"""Uses symbols and Function for functions of time.
Creates a SymPy UndefinedFunction, which is then initialized as a function
of a variable, the default being Symbol('t').
Parameters
==========
names : str
Names of the dynamic symbols you want to create; works the same way as
inputs to symbols
level : int
Level of differentiation of the returned function; d/dt once of t,
twice of t, etc.
Examples
========
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy import diff, Symbol
>>> q1 = dynamicsymbols('q1')
>>> q1
q1(t)
>>> diff(q1, Symbol('t'))
Derivative(q1(t), t)
"""
esses = symbols(names, cls=Function)
t = dynamicsymbols._t
if iterable(esses):
esses = [reduce(diff, [t] * level, e(t)) for e in esses]
return esses
else:
return reduce(diff, [t] * level, esses(t))
示例11: test_linearize_pendulum_lagrange_minimal
def test_linearize_pendulum_lagrange_minimal():
q1 = dynamicsymbols('q1') # angle of pendulum
q1d = dynamicsymbols('q1', 1) # Angular velocity
L, m, t = symbols('L, m, t')
g = 9.8
# Compose world frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
A = N.orientnew('A', 'axis', [q1, N.z])
A.set_ang_vel(N, q1d*N.z)
# Locate point P relative to the origin N*
P = pN.locatenew('P', L*A.x)
P.v2pt_theory(pN, N, A)
pP = Particle('pP', P, m)
# Solve for eom with Lagranges method
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Linearize
A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)
assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
assert B == Matrix([])
示例12: test_inertia_of_point_mass
def test_inertia_of_point_mass():
r, s, t, m = symbols('r s t m')
N = ReferenceFrame('N')
px = r * N.x
I = inertia_of_point_mass(m, px, N)
assert I == m * r**2 * (N.y | N.y) + m * r**2 * (N.z | N.z)
py = s * N.y
I = inertia_of_point_mass(m, py, N)
assert I == m * s**2 * (N.x | N.x) + m * s**2 * (N.z | N.z)
pz = t * N.z
I = inertia_of_point_mass(m, pz, N)
assert I == m * t**2 * (N.x | N.x) + m * t**2 * (N.y | N.y)
p = px + py + pz
I = inertia_of_point_mass(m, p, N)
assert I == (m * (s**2 + t**2) * (N.x | N.x) -
m * r * s * (N.x | N.y) -
m * r * t * (N.x | N.z) -
m * r * s * (N.y | N.x) +
m * (r**2 + t**2) * (N.y | N.y) -
m * s * t * (N.y | N.z) -
m * r * t * (N.z | N.x) -
m * s * t * (N.z | N.y) +
m * (r**2 + s**2) * (N.z | N.z))
示例13: test_multi_mass_spring_damper_higher_order
def test_multi_mass_spring_damper_higher_order():
c0, k0, m0 = symbols("c0 k0 m0")
c1, k1, m1 = symbols("c1 k1 m1")
c2, k2, m2 = symbols("c2 k2 m2")
v0, x0 = dynamicsymbols("v0 x0")
v1, x1 = dynamicsymbols("v1 x1")
v2, x2 = dynamicsymbols("v2 x2")
kane1 = models.multi_mass_spring_damper(3)
massmatrix1 = Matrix([[m0 + m1 + m2, m1 + m2, m2],
[m1 + m2, m1 + m2, m2],
[m2, m2, m2]])
forcing1 = Matrix([[-c0*v0 - k0*x0],
[-c1*v1 - k1*x1],
[-c2*v2 - k2*x2]])
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
示例14: test_center_of_mass
def test_center_of_mass():
a = ReferenceFrame('a')
m = symbols('m', real=True)
p1 = Particle('p1', Point('p1_pt'), S(1))
p2 = Particle('p2', Point('p2_pt'), S(2))
p3 = Particle('p3', Point('p3_pt'), S(3))
p4 = Particle('p4', Point('p4_pt'), m)
b_f = ReferenceFrame('b_f')
b_cm = Point('b_cm')
mb = symbols('mb')
b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
p2.point.set_pos(p1.point, a.x)
p3.point.set_pos(p1.point, a.x + a.y)
p4.point.set_pos(p1.point, a.y)
b.masscenter.set_pos(p1.point, a.y + a.z)
point_o=Point('o')
point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
assert point_o.pos_from(p1.point)-expr == 0
示例15: test_aux
def test_aux():
# Same as above, except we have 2 auxiliary speeds for the ground contact
# point, which is known to be zero. In one case, we go through then
# substitute the aux. speeds in at the end (they are zero, as well as their
# derivative), in the other case, we use the built-in auxiliary speed part
# of KanesMethod. The equations from each should be the same.
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
u4d, u5d = dynamicsymbols('u4, u5', 1)
r, m, g = symbols('r m g')
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
w_R_N_qd = R.ang_vel_in(N)
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
C = Point('C')
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
Dmc.a2pt_theory(C, N, R)
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
BodyList = [BodyD]
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
kd_eqs=kd)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
(fr, frstar) = KM.kanes_equations(ForceList, BodyList)
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
u_auxiliary=[u4, u5])
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
(fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
frstar.simplify()
frstar2.simplify()
assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])