当前位置: 首页>>代码示例>>Python>>正文


Python C.factorial方法代码示例

本文整理汇总了Python中sympy.core.C.factorial方法的典型用法代码示例。如果您正苦于以下问题:Python C.factorial方法的具体用法?Python C.factorial怎么用?Python C.factorial使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.core.C的用法示例。


在下文中一共展示了C.factorial方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: monomial_count

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
def monomial_count(V, N):
    r"""
    Computes the number of monomials.

    The number of monomials is given by the following formula:

    .. math::

        \frac{(\#V + N)!}{\#V! N!}

    where `N` is a total degree and `V` is a set of variables.

    **Examples**

    >>> from sympy import monomials, monomial_count
    >>> from sympy.abc import x, y

    >>> monomial_count(2, 2)
    6

    >>> M = monomials([x, y], 2)

    >>> sorted(M)
    [1, x, y, x**2, y**2, x*y]
    >>> len(M)
    6

    """
    return C.factorial(V + N) / C.factorial(V) / C.factorial(N)
开发者ID:101man,项目名称:sympy,代码行数:31,代码来源:monomialtools.py

示例2: monomial_count

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
def monomial_count(V, N):
    r"""
    Computes the number of monomials.

    The number of monomials is given by the following formula:

    .. math::

        \frac{(\#V + N)!}{\#V! N!}

    where `N` is a total degree and `V` is a set of variables.

    Examples
    ========

    >>> from sympy.polys.monomials import itermonomials, monomial_count
    >>> from sympy.polys.orderings import monomial_key
    >>> from sympy.abc import x, y

    >>> monomial_count(2, 2)
    6

    >>> M = itermonomials([x, y], 2)

    >>> sorted(M, key=monomial_key('grlex', [y, x]))
    [1, x, y, x**2, x*y, y**2]
    >>> len(M)
    6

    """
    return C.factorial(V + N) / C.factorial(V) / C.factorial(N)
开发者ID:AALEKH,项目名称:sympy,代码行数:33,代码来源:monomials.py

示例3: _eval_aseries

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def _eval_aseries(self, n, args0, x, logx):
        if args0[0] != S.Infinity:
            return super(_erfs, self)._eval_aseries(n, args0, x, logx)

        z = self.args[0]
        l = [ 1/sqrt(S.Pi) * C.factorial(2*k)*(-S(4))**(-k)/C.factorial(k) * (1/z)**(2*k+1) for k in xrange(0,n) ]
        o = C.Order(1/z**(2*n+1), x)
        # It is very inefficient to first add the order and then do the nseries
        return (Add(*l))._eval_nseries(x, n, logx) + o
开发者ID:StefenYin,项目名称:sympy,代码行数:11,代码来源:error_functions.py

示例4: eval

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def eval(cls, z, a=S.One):
        z, a = map(sympify, (z, a))

        if a.is_Number:
            if a is S.NaN:
                return S.NaN
            elif a is S.Zero:
                return cls(z)

        if z.is_Number:
            if z is S.NaN:
                return S.NaN
            elif z is S.Infinity:
                return S.One
            elif z is S.Zero:
                if a.is_negative:
                    return S.Half - a - 1
                else:
                    return S.Half - a
            elif z is S.One:
                return S.ComplexInfinity
            elif z.is_Integer:
                if a.is_Integer:
                    if z.is_negative:
                        zeta = (-1)**z * C.bernoulli(-z+1)/(-z+1)
                    elif z.is_even:
                        B, F = C.bernoulli(z), C.factorial(z)
                        zeta = 2**(z-1) * abs(B) * pi**z / F
                    else:
                        return

                    if a.is_negative:
                        return zeta + C.harmonic(abs(a), z)
                    else:
                        return zeta - C.harmonic(a-1, z)
开发者ID:Kimay,项目名称:sympy,代码行数:37,代码来源:zeta_functions.py

示例5: eval

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def eval(cls, arg):
        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.Infinity
            elif arg.is_Integer:
                if arg.is_positive:
                    return C.factorial(arg - 1)
                else:
                    return S.ComplexInfinity
            elif arg.is_Rational:
                if arg.q == 2:
                    n = abs(arg.p) // arg.q

                    if arg.is_positive:
                        k, coeff = n, S.One
                    else:
                        n = k = n + 1

                        if n & 1 == 0:
                            coeff = S.One
                        else:
                            coeff = S.NegativeOne

                    for i in range(3, 2 * k, 2):
                        coeff *= i

                    if arg.is_positive:
                        return coeff * sqrt(S.Pi) / 2 ** n
                    else:
                        return 2 ** n * sqrt(S.Pi) / coeff
开发者ID:Krastanov,项目名称:sympy,代码行数:34,代码来源:gamma_functions.py

示例6: _eval_expand_func

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def _eval_expand_func(self, **hints):
        n, z = self.args

        if n.is_Integer and n.is_nonnegative:
            if z.is_Add:
                coeff = z.args[0]
                if coeff.is_Integer:
                    e = -(n + 1)
                    if coeff > 0:
                        tail = Add(*[C.Pow(z - i, e) for i in xrange(1, int(coeff) + 1)])
                    else:
                        tail = -Add(*[C.Pow(z + i, e) for i in xrange(0, int(-coeff))])
                    return polygamma(n, z - coeff) + (-1) ** n * C.factorial(n) * tail

            elif z.is_Mul:
                coeff, z = z.as_two_terms()
                if coeff.is_Integer and coeff.is_positive:
                    tail = [polygamma(n, z + C.Rational(i, coeff)) for i in xrange(0, int(coeff))]
                    if n == 0:
                        return Add(*tail) / coeff + log(coeff)
                    else:
                        return Add(*tail) / coeff ** (n + 1)
                z *= coeff

        return polygamma(n, z)
开发者ID:Krastanov,项目名称:sympy,代码行数:27,代码来源:gamma_functions.py

示例7: taylor_term

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
 def taylor_term(n, x, *previous_terms):
     if n<0: return S.Zero
     if n==0: return S.One
     x = sympify(x)
     if previous_terms:
         p = previous_terms[-1]
         if p is not None:
             return p * x / n
     return x**n/C.factorial()(n)
开发者ID:jegerjensen,项目名称:sympy,代码行数:11,代码来源:exponential.py

示例8: taylor_term

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
 def taylor_term(n, x, *previous_terms):
     if n < 0 or n % 2 == 0:
         return S.Zero
     else:
         x = sympify(x)
         k = C.floor((n - 1)/S(2))
         if len(previous_terms) > 2:
             return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
         else:
             return 2*(-1)**k * x**n/(n*C.factorial(k)*sqrt(S.Pi))
开发者ID:Maihj,项目名称:sympy,代码行数:12,代码来源:error_functions.py

示例9: taylor_term

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def taylor_term(n, x, *previous_terms):
        if n < 0 or n % 2 == 1:
            return S.Zero
        else:
            x = sympify(x)

            if len(previous_terms) > 2:
                p = previous_terms[-2]
                return p * x**2 / (n*(n-1))
            else:
                return x**(n)/C.factorial(n)
开发者ID:ENuge,项目名称:sympy,代码行数:13,代码来源:hyperbolic.py

示例10: taylor_term

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
 def taylor_term(n, x, *previous_terms):
     """
     Calculates the next term in the Taylor series expansion.
     """
     if n<0: return S.Zero
     if n==0: return S.One
     x = sympify(x)
     if previous_terms:
         p = previous_terms[-1]
         if p is not None:
             return p * x / n
     return x**n/C.factorial()(n)
开发者ID:songuke,项目名称:sympy,代码行数:14,代码来源:exponential.py

示例11: taylor_term

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def taylor_term(n, x, *previous_terms):
        """
        Returns the next term in the Taylor series expansion
        """
        if n == 0:
            return 1/sympify(x)
        elif n < 0 or n % 2 == 0:
            return S.Zero
        else:
            x = sympify(x)

            B = C.bernoulli(n + 1)
            F = C.factorial(n + 1)

            return 2 * (1 - 2**n) * B/F * x**n
开发者ID:artcompiler,项目名称:artcompiler.github.com,代码行数:17,代码来源:hyperbolic.py

示例12: eval

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def eval(cls, z, a_=None):
        if a_ is None:
            z, a = list(map(sympify, (z, 1)))
        else:
            z, a = list(map(sympify, (z, a_)))

        if a.is_Number:
            if a is S.NaN:
                return S.NaN
            elif a is S.One and a_ is not None:
                return cls(z)
            # TODO Should a == 0 return S.NaN as well?

        if z.is_Number:
            if z is S.NaN:
                return S.NaN
            elif z is S.Infinity:
                return S.One
            elif z is S.Zero:
                if a.is_negative:
                    return S.Half - a - 1
                else:
                    return S.Half - a
            elif z is S.One:
                return S.ComplexInfinity
            elif z.is_Integer:
                if a.is_Integer:
                    if z.is_negative:
                        zeta = (-1)**z * C.bernoulli(-z + 1)/(-z + 1)
                    elif z.is_even:
                        B, F = C.bernoulli(z), C.factorial(z)
                        zeta = 2**(z - 1) * abs(B) * pi**z / F
                    else:
                        return

                    if a.is_negative:
                        return zeta + C.harmonic(abs(a), z)
                    else:
                        return zeta - C.harmonic(a - 1, z)
开发者ID:artcompiler,项目名称:artcompiler.github.com,代码行数:41,代码来源:zeta_functions.py

示例13: eval

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
    def eval(cls, n, z):
        n, z = map(sympify, (n, z))

        if n.is_integer:
            if n.is_negative:
                return loggamma(z)
            else:
                if z.is_Number:
                    if z is S.NaN:
                        return S.NaN
                    elif z is S.Infinity:
                        if n.is_Number:
                            if n is S.Zero:
                                return S.Infinity
                            else:
                                return S.Zero
                    elif z.is_Integer:
                        if z.is_nonpositive:
                            return S.ComplexInfinity
                        else:
                            if n is S.Zero:
                                return -S.EulerGamma + C.harmonic(z-1, 1)
                            elif n.is_odd:
                                return (-1)**(n+1)*C.factorial(n)*zeta(n+1, z)
开发者ID:Kimay,项目名称:sympy,代码行数:26,代码来源:gamma_functions.py

示例14: _eval_rewrite_as_factorial

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
 def _eval_rewrite_as_factorial(self, n, k):
     return C.factorial(n)/(C.factorial(k)*C.factorial(n - k))
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:4,代码来源:factorials.py

示例15: _eval_rewrite_as_harmonic

# 需要导入模块: from sympy.core import C [as 别名]
# 或者: from sympy.core.C import factorial [as 别名]
 def _eval_rewrite_as_harmonic(self, n, z):
     if n.is_integer:
         if n == S.Zero:
             return harmonic(z - 1) - S.EulerGamma
         else:
             return S.NegativeOne ** (n + 1) * C.factorial(n) * (C.zeta(n + 1) - harmonic(z - 1, n + 1))
开发者ID:Krastanov,项目名称:sympy,代码行数:8,代码来源:gamma_functions.py


注:本文中的sympy.core.C.factorial方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。