本文整理汇总了Python中sympy.combinatorics.named_groups.DihedralGroup.is_transitive方法的典型用法代码示例。如果您正苦于以下问题:Python DihedralGroup.is_transitive方法的具体用法?Python DihedralGroup.is_transitive怎么用?Python DihedralGroup.is_transitive使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.combinatorics.named_groups.DihedralGroup
的用法示例。
在下文中一共展示了DihedralGroup.is_transitive方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_orbits
# 需要导入模块: from sympy.combinatorics.named_groups import DihedralGroup [as 别名]
# 或者: from sympy.combinatorics.named_groups.DihedralGroup import is_transitive [as 别名]
def test_orbits():
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
g = PermutationGroup([a, b])
assert g.orbit(0) == {0, 1, 2}
assert g.orbits() == [{0, 1, 2}]
assert g.is_transitive() and g.is_transitive(strict=False)
assert g.orbit_transversal(0) == \
[Permutation(
[0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])]
assert g.orbit_transversal(0, True) == \
[(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])),
(1, Permutation([1, 2, 0]))]
G = DihedralGroup(6)
transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True)
for i, t in transversal:
slp = slps[i]
w = G.identity
for s in slp:
w = G.generators[s]*w
assert w == t
a = Permutation(list(range(1, 100)) + [0])
G = PermutationGroup([a])
assert [min(o) for o in G.orbits()] == [0]
G = PermutationGroup(rubik_cube_generators())
assert [min(o) for o in G.orbits()] == [0, 1]
assert not G.is_transitive() and not G.is_transitive(strict=False)
G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)])
assert not G.is_transitive() and G.is_transitive(strict=False)
assert PermutationGroup(
Permutation(3)).is_transitive(strict=False) is False
示例2: test_DihedralGroup
# 需要导入模块: from sympy.combinatorics.named_groups import DihedralGroup [as 别名]
# 或者: from sympy.combinatorics.named_groups.DihedralGroup import is_transitive [as 别名]
def test_DihedralGroup():
G = DihedralGroup(6)
elements = list(G.generate())
assert len(elements) == 12
assert G.is_transitive() is True
assert G.is_abelian is False
H = DihedralGroup(1)
assert H.order() == 2
L = DihedralGroup(2)
assert L.order() == 4
assert L.is_abelian is True