本文整理汇总了Python中sympy.abc.t函数的典型用法代码示例。如果您正苦于以下问题:Python t函数的具体用法?Python t怎么用?Python t使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了t函数的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_inflate
def test_inflate():
subs = {a: randcplx()/10, b: randcplx()/10 + I, c: randcplx(),
d: randcplx(), y:randcplx()/10}
def t(a, b, arg, n):
from sympy import Mul
m1 = meijerg(a, b, arg)
m2 = Mul(*_inflate_g(m1, n))
# NOTE: (the random number)**9 must still be on the principal sheet.
# Thus make b&d small to create random numbers of small imaginary part.
return test_numerically(m1.subs(subs), m2.subs(subs), x, b=0.1, d=-0.1)
assert t([[a], [b]], [[c], [d]], x, 3)
assert t([[a, y], [b]], [[c], [d]], x, 3)
assert t([[a], [b]], [[c, y], [d]], 2*x**3, 3)
示例2: test_rewrite_single
def test_rewrite_single():
def t(expr, c, m):
e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
assert e is not None
assert isinstance(e[0][0][2], meijerg)
assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))
def tn(expr):
assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None
t(x, 1, x)
t(x ** 2, 1, x ** 2)
t(x ** 2 + y * x ** 2, y + 1, x ** 2)
tn(x ** 2 + x)
tn(x ** y)
def u(expr, x):
from sympy import Add, exp, exp_polar
r = _rewrite_single(expr, x)
e = Add(*[res[0] * res[2] for res in r[0]]).replace(exp_polar, exp) # XXX Hack?
assert test_numerically(e, expr, x)
u(exp(-x) * sin(x), x)
u(exp(-x) * sin(x) * cos(x), x)
u(exp(x) * sin(x), x)
示例3: test_rewrite_single
def test_rewrite_single():
def t(expr, c, m):
e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
assert e is not None
assert isinstance(e[0][0][2], meijerg)
assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))
def tn(expr):
assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None
t(x, 1, x)
t(x ** 2, 1, x ** 2)
t(x ** 2 + y * x ** 2, y + 1, x ** 2)
tn(x ** 2 + x)
tn(x ** y)
def u(expr, x):
from sympy import Add, exp, exp_polar
r = _rewrite_single(expr, x)
e = Add(*[res[0] * res[2] for res in r[0]]).replace(exp_polar, exp) # XXX Hack?
assert verify_numerically(e, expr, x)
u(exp(-x) * sin(x), x)
# The following has stopped working because hyperexpand changed slightly.
# It is probably not worth fixing
# u(exp(-x)*sin(x)*cos(x), x)
# This one cannot be done numerically, since it comes out as a g-function
# of argument 4*pi
# NOTE This also tests a bug in inverse mellin transform (which used to
# turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of
# exp_polar).
# u(exp(x)*sin(x), x)
assert _rewrite_single(exp(x) * sin(x), x) == (
[
(
-sqrt(2) / (2 * sqrt(pi)),
0,
meijerg(
((-S(1) / 2, 0, S(1) / 4, S(1) / 2, S(3) / 4), (1,)),
((), (-S(1) / 2, 0)),
64 * exp_polar(-4 * I * pi) / x ** 4,
),
)
],
True,
)
示例4: test_meijerint_indefinite_numerically
def test_meijerint_indefinite_numerically():
def t(fac, arg):
g = meijerg([a], [b], [c], [d], arg) * fac
subs = {a: randcplx() / 10, b: randcplx() / 10 + I, c: randcplx(), d: randcplx()}
integral = meijerint_indefinite(g, x)
assert integral is not None
assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x)
t(1, x)
t(2, x)
t(1, 2 * x)
t(1, x ** 2)
t(5, x ** S("3/2"))
t(x ** 3, x)
t(3 * x ** S("3/2"), 4 * x ** S("7/3"))