当前位置: 首页>>代码示例>>Python>>正文


Python abc.f函数代码示例

本文整理汇总了Python中sympy.abc.f函数的典型用法代码示例。如果您正苦于以下问题:Python f函数的具体用法?Python f怎么用?Python f使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了f函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_f_expand_complex

def test_f_expand_complex():
    x = Symbol("x", real=True)

    assert f(x).expand(complex=True) == I * im(f(x)) + re(f(x))
    assert exp(x).expand(complex=True) == exp(x)
    assert exp(I * x).expand(complex=True) == cos(x) + I * sin(x)
    assert exp(z).expand(complex=True) == cos(im(z)) * exp(re(z)) + I * sin(im(z)) * exp(re(z))
开发者ID:scopatz,项目名称:sympy,代码行数:7,代码来源:test_function.py

示例2: test_Lambda

def test_Lambda():
    e = Lambda(x, x**2)
    assert e(4) == 16
    assert e(x) == x**2
    assert e(y) == y**2

    assert Lambda((), 42)() == 42
    assert Lambda((), 42) == Lambda((), 42)
    assert Lambda((), 42) != Lambda((), 43)
    assert Lambda((), f(x))() == f(x)
    assert Lambda((), 42).nargs == FiniteSet(0)

    assert Lambda(x, x**2) == Lambda(x, x**2)
    assert Lambda(x, x**2) == Lambda(y, y**2)
    assert Lambda(x, x**2) != Lambda(y, y**2 + 1)
    assert Lambda((x, y), x**y) == Lambda((y, x), y**x)
    assert Lambda((x, y), x**y) != Lambda((x, y), y**x)

    assert Lambda((x, y), x**y)(x, y) == x**y
    assert Lambda((x, y), x**y)(3, 3) == 3**3
    assert Lambda((x, y), x**y)(x, 3) == x**3
    assert Lambda((x, y), x**y)(3, y) == 3**y
    assert Lambda(x, f(x))(x) == f(x)
    assert Lambda(x, x**2)(e(x)) == x**4
    assert e(e(x)) == x**4

    assert Lambda((x, y), x + y).nargs == FiniteSet(2)

    p = x, y, z, t
    assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z)

    assert Lambda(x, 2*x) + Lambda(y, 2*y) == 2*Lambda(x, 2*x)
    assert Lambda(x, 2*x) not in [ Lambda(x, x) ]
    raises(TypeError, lambda: Lambda(1, x))
    assert Lambda(x, 1)(1) is S.One
开发者ID:aprasanna,项目名称:sympy,代码行数:35,代码来源:test_function.py

示例3: test_derivative_subs_bug

def test_derivative_subs_bug():
    e = diff(g(x), x)
    assert e.subs(g(x), f(x)) != e
    assert e.subs(g(x), f(x)) == Derivative(f(x), x)
    assert e.subs(g(x), -f(x)) == Derivative(-f(x), x)

    assert e.subs(x, y) == Derivative(g(y), y)
开发者ID:normalhuman,项目名称:sympy,代码行数:7,代码来源:test_function.py

示例4: test_is_commutative

def test_is_commutative():
    from sympy.physics.secondquant import NO, F, Fd
    m = Symbol('m', commutative=False)
    for f in (Sum, Product, Integral):
        assert f(z, (z, 1, 1)).is_commutative is True
        assert f(z*y, (z, 1, 6)).is_commutative is True
        assert f(m*x, (x, 1, 2)).is_commutative is False

        assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False
开发者ID:JoenyBui,项目名称:sympy,代码行数:9,代码来源:test_sums_products.py

示例5: test_function_complex

def test_function_complex():
    x = Symbol('x', complex=True)
    assert f(x).is_commutative is True
    assert sin(x).is_commutative is True
    assert exp(x).is_commutative is True
    assert log(x).is_commutative is True
    assert f(x).is_complex is True
    assert sin(x).is_complex is True
    assert exp(x).is_complex is True
    assert log(x).is_complex is True
开发者ID:normalhuman,项目名称:sympy,代码行数:10,代码来源:test_function.py

示例6: test_function_non_commutative

def test_function_non_commutative():
    x = Symbol('x', commutative=False)
    assert f(x).is_commutative is False
    assert sin(x).is_commutative is False
    assert exp(x).is_commutative is False
    assert log(x).is_commutative is False
    assert f(x).is_complex is False
    assert sin(x).is_complex is False
    assert exp(x).is_complex is False
    assert log(x).is_complex is False
开发者ID:normalhuman,项目名称:sympy,代码行数:10,代码来源:test_function.py

示例7: test_unhandled

def test_unhandled():
    class MyExpr(Expr):
        def _eval_derivative(self, s):
            if not s.name.startswith('xi'):
                return self
            else:
                return None

    expr = MyExpr(x, y, z)
    assert diff(expr, x, y, f(x), z) == Derivative(expr, f(x), z)
    assert diff(expr, f(x), x) == Derivative(expr, f(x), x)
开发者ID:normalhuman,项目名称:sympy,代码行数:11,代码来源:test_function.py

示例8: test_simplify_expr

def test_simplify_expr():
    x, y, z, k, n, m, w, f, s, A = symbols("x,y,z,k,n,m,w,f,s,A")

    assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I])

    e = 1 / x + 1 / y
    assert e != (x + y) / (x * y)
    assert simplify(e) == (x + y) / (x * y)

    e = A ** 2 * s ** 4 / (4 * pi * k * m ** 3)
    assert simplify(e) == e

    e = (4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)
    assert simplify(e) == 0

    e = (-4 * x * y ** 2 - 2 * y ** 3 - 2 * x ** 2 * y) / (x + y) ** 2
    assert simplify(e) == -2 * y

    e = -x - y - (x + y) ** (-1) * y ** 2 + (x + y) ** (-1) * x ** 2
    assert simplify(e) == -2 * y

    e = (x + x * y) / x
    assert simplify(e) == 1 + y

    e = (f(x) + y * f(x)) / f(x)
    assert simplify(e) == 1 + y

    e = (2 * (1 / n - cos(n * pi) / n)) / pi
    assert simplify(e) == (-cos(pi * n) + 1) / (pi * n) * 2

    e = integrate(1 / (x ** 3 + 1), x).diff(x)
    assert simplify(e) == 1 / (x ** 3 + 1)

    e = integrate(x / (x ** 2 + 3 * x + 1), x).diff(x)
    assert simplify(e) == x / (x ** 2 + 3 * x + 1)

    A = Matrix([[2 * k - m * w ** 2, -k], [-k, k - m * w ** 2]]).inv()
    assert simplify((A * Matrix([0, f]))[1]) == -f * (2 * k - m * w ** 2) / (
        k ** 2 - (k - m * w ** 2) * (2 * k - m * w ** 2)
    )

    f = -x + y / (z + t) + z * x / (z + t) + z * a / (z + t) + t * x / (z + t)
    assert simplify(f) == (y + a * z) / (z + t)

    A, B = symbols("A,B", commutative=False)

    assert simplify(A * B - B * A) == A * B - B * A
    assert simplify(A / (1 + y / x)) == x * A / (x + y)
    assert simplify(A * (1 / x + 1 / y)) == A / x + A / y  # (x + y)*A/(x*y)

    assert simplify(log(2) + log(3)) == log(6)
    assert simplify(log(2 * x) - log(2)) == log(x)

    assert simplify(hyper([], [], x)) == exp(x)
开发者ID:pabloferz,项目名称:sympy,代码行数:54,代码来源:test_simplify.py

示例9: test_issue_12005

def test_issue_12005():
    e1 = Subs(Derivative(f(x), x), (x,), (x,))
    assert e1.diff(x) == Derivative(f(x), x, x)
    e2 = Subs(Derivative(f(x), x), (x,), (x**2 + 1,))
    assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), (x,), (x**2 + 1,))
    e3 = Subs(Derivative(f(x) + y**2 - y, y), (y,), (y**2,))
    assert e3.diff(y) == 4*y
    e4 = Subs(Derivative(f(x + y), y), (y,), (x**2))
    assert e4.diff(y) == S.Zero
    e5 = Subs(Derivative(f(x), x), (y, z), (y, z))
    assert e5.diff(x) == Derivative(f(x), x, x)
    assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x))
开发者ID:normalhuman,项目名称:sympy,代码行数:12,代码来源:test_function.py

示例10: test_issue_7068

def test_issue_7068():
    from sympy.abc import a, b, f
    y1 = Dummy('y')
    y2 = Dummy('y')
    func1 = f(a + y1 * b)
    func2 = f(a + y2 * b)
    func1_y = func1.diff(y1)
    func2_y = func2.diff(y2)
    assert func1_y != func2_y
    z1 = Subs(f(a), a, y1)
    z2 = Subs(f(a), a, y2)
    assert z1 != z2
开发者ID:normalhuman,项目名称:sympy,代码行数:12,代码来源:test_function.py

示例11: test_func_deriv

def test_func_deriv():
    assert f(x).diff(x) == Derivative(f(x), x)
    # issue 4534
    assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0
    assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1))
    assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1))
    assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0
开发者ID:normalhuman,项目名称:sympy,代码行数:7,代码来源:test_function.py

示例12: test_Sum_doit

def test_Sum_doit():
    assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3
    assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
        3*Integral(a**2)
    assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2)

    # test nested sum evaluation
    s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n))
    assert 0 == (s.doit() - n*(n+1)*(n-1)).factor()

    assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
    assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
        3*Piecewise((1, And(S(1) <= k, k <= 3)), (0, True))
    assert Sum(f(n)*Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
        f(1) + f(2) + f(3)
    assert Sum(f(n)*Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
        Sum(Piecewise((f(n), n >= 0), (0, True)), (n, 1, oo))
    l = Symbol('l', integer=True, positive=True)
    assert Sum(f(l)*Sum(KroneckerDelta(m, l), (m, 0, oo)), (l, 1, oo)).doit() == \
        Sum(f(l), (l, 1, oo))

    # issue 2597
    nmax = symbols('N', integer=True, positive=True)
    pw = Piecewise((1, And(S(1) <= n, n <= nmax)), (0, True))
    assert Sum(pw, (n, 1, nmax)).doit() == Sum(pw, (n, 1, nmax))
开发者ID:JoenyBui,项目名称:sympy,代码行数:25,代码来源:test_sums_products.py

示例13: test_function_assumptions

def test_function_assumptions():
    x = Symbol('x')
    f = Function('f')
    f_real = Function('f', real=True)

    assert f != f_real
    assert f(x) != f_real(x)

    assert f(x).is_real is None
    assert f_real(x).is_real is True

    # Can also do it this way, but it won't be equal to f_real because of the
    # way UndefinedFunction.__new__ works.
    f_real2 = Function('f', is_real=True)
    assert f_real2(x).is_real is True
开发者ID:normalhuman,项目名称:sympy,代码行数:15,代码来源:test_function.py

示例14: test_klein_gordon_lagrangian

def test_klein_gordon_lagrangian():
    m = Symbol("m")
    phi = f(x, t)

    L = -(diff(phi, t) ** 2 - diff(phi, x) ** 2 - m ** 2 * phi ** 2) / 2
    eqna = Eq(diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0)
    eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m ** 2 * phi, 0)
    assert eqna == eqnb
开发者ID:scopatz,项目名称:sympy,代码行数:8,代码来源:test_function.py

示例15: test_collect_D_0

def test_collect_D_0():
    D = Derivative
    f = Function('f')
    x, a, b = symbols('x,a,b')
    fxx = D(f(x), x, x)

    # collect does not distinguish nested derivatives, so it returns
    #                                           -- (a + b)*D(D(f, x), x)
    assert collect(a*fxx + b*fxx, fxx) == (a + b)*fxx
开发者ID:Lenqth,项目名称:sympy,代码行数:9,代码来源:test_radsimp.py


注:本文中的sympy.abc.f函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。