本文整理汇总了Python中sympy.Limit.doit方法的典型用法代码示例。如果您正苦于以下问题:Python Limit.doit方法的具体用法?Python Limit.doit怎么用?Python Limit.doit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.Limit
的用法示例。
在下文中一共展示了Limit.doit方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: is_convergent
# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]
#.........这里部分代码省略.........
lim_ratio = limit(ratio, sym, upper_limit)
if lim_ratio.is_number:
if abs(lim_ratio) > 1:
return S.false
if abs(lim_ratio) < 1:
return S.true
### --------- p-series test (1/n**p) ---------- ###
p1_series_test = order.expr.match(sym**p)
if p1_series_test is not None:
if p1_series_test[p] < -1:
return S.true
if p1_series_test[p] >= -1:
return S.false
p2_series_test = order.expr.match((1/sym)**p)
if p2_series_test is not None:
if p2_series_test[p] > 1:
return S.true
if p2_series_test[p] <= 1:
return S.false
### ------------- Limit comparison test -----------###
# (1/n) comparison
try:
lim_comp = limit(sym*sequence_term, sym, S.Infinity)
if lim_comp.is_number and lim_comp > 0:
return S.false
except NotImplementedError:
pass
### ----------- root test ---------------- ###
lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
lim_evaluated = lim.doit()
if lim_evaluated.is_number:
if lim_evaluated < 1:
return S.true
if lim_evaluated > 1:
return S.false
### ------------- alternating series test ----------- ###
dict_val = sequence_term.match((-1)**(sym + p)*q)
if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
return S.true
### ------------- comparison test ------------- ###
# (1/log(n)**p) comparison
log_test = order.expr.match(1/(log(sym)**p))
if log_test is not None:
return S.false
# (1/(n*log(n)**p)) comparison
log_n_test = order.expr.match(1/(sym*(log(sym))**p))
if log_n_test is not None:
if log_n_test[p] > 1:
return S.true
return S.false
# (1/(n*log(n)*log(log(n))*p)) comparison
log_log_n_test = order.expr.match(1/(sym*(log(sym)*log(log(sym))**p)))
if log_log_n_test is not None:
if log_log_n_test[p] > 1:
return S.true
return S.false
# (1/(n**p*log(n))) comparison
示例2: test_doit
# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]
def test_doit():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
assert l.doit() == oo
示例3: test_doit2
# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]
def test_doit2():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
# limit() breaks on the contained Integral.
assert l.doit(deep=False) == l
示例4: is_convergent
# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]
def is_convergent(self):
"""
Convergence tests are used for checking the convergence of
a series. There are various tests employed to check the convergence,
returns true if convergent and false if divergent and NotImplementedError
if can not be checked. Like divergence test, root test, integral test,
alternating series test, comparison tests, Dirichlet tests.
References
==========
.. [1] https://en.wikipedia.org/wiki/Convergence_tests
Examples
========
>>> from sympy import Interval, factorial, S, Sum, Symbol, oo
>>> n = Symbol('n', integer=True)
>>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
True
>>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
False
>>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
False
>>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
True
See Also
========
Sum.is_absolute_convergent()
"""
from sympy import Interval, Integral, Limit, log, symbols, Ge, Gt, simplify
p, q = symbols('p q', cls=Wild)
sym = self.limits[0][0]
lower_limit = self.limits[0][1]
upper_limit = self.limits[0][2]
sequence_term = self.function
if len(sequence_term.free_symbols) > 1:
raise NotImplementedError("convergence checking for more that one symbol \
containing series is not handled")
if lower_limit.is_finite and upper_limit.is_finite:
return S.true
# transform sym -> -sym and swap the upper_limit = S.Infinity and lower_limit = - upper_limit
if lower_limit is S.NegativeInfinity:
if upper_limit is S.Infinity:
return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
lower_limit = -upper_limit
upper_limit = S.Infinity
interval = Interval(lower_limit, upper_limit)
# Piecewise function handle
if sequence_term.is_Piecewise:
for func_cond in sequence_term.args:
if func_cond[1].func is Ge or func_cond[1].func is Gt or func_cond[1] == True:
return Sum(func_cond[0], (sym, lower_limit, upper_limit)).is_convergent()
return S.true
### -------- Divergence test ----------- ###
try:
lim_val = limit(abs(sequence_term), sym, upper_limit)
if lim_val.is_number and lim_val != S.Zero:
return S.false
except NotImplementedError:
pass
order = O(sequence_term, (sym, S.Infinity))
### --------- p-series test (1/n**p) ---------- ###
p1_series_test = order.expr.match(sym**p)
if p1_series_test is not None:
if p1_series_test[p] < -1:
return S.true
if p1_series_test[p] > -1:
return S.false
p2_series_test = order.expr.match((1/sym)**p)
if p2_series_test is not None:
if p2_series_test[p] > 1:
return S.true
if p2_series_test[p] < 1:
return S.false
### ----------- root test ---------------- ###
lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
lim_evaluated = lim.doit()
if lim_evaluated.is_number:
if lim_evaluated < 1:
return S.true
if lim_evaluated > 1:
return S.false
### ------------- alternating series test ----------- ###
#.........这里部分代码省略.........