当前位置: 首页>>代码示例>>Python>>正文


Python Limit.doit方法代码示例

本文整理汇总了Python中sympy.Limit.doit方法的典型用法代码示例。如果您正苦于以下问题:Python Limit.doit方法的具体用法?Python Limit.doit怎么用?Python Limit.doit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.Limit的用法示例。


在下文中一共展示了Limit.doit方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: is_convergent

# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]

#.........这里部分代码省略.........
        lim_ratio = limit(ratio, sym, upper_limit)
        if lim_ratio.is_number:
            if abs(lim_ratio) > 1:
                return S.false
            if abs(lim_ratio) < 1:
                return S.true

        ### --------- p-series test (1/n**p) ---------- ###
        p1_series_test = order.expr.match(sym**p)
        if p1_series_test is not None:
            if p1_series_test[p] < -1:
                return S.true
            if p1_series_test[p] >= -1:
                return S.false

        p2_series_test = order.expr.match((1/sym)**p)
        if p2_series_test is not None:
            if p2_series_test[p] > 1:
                return S.true
            if p2_series_test[p] <= 1:
                return S.false

        ### ------------- Limit comparison test -----------###
        # (1/n) comparison
        try:
            lim_comp = limit(sym*sequence_term, sym, S.Infinity)
            if lim_comp.is_number and lim_comp > 0:
                    return S.false
        except NotImplementedError:
            pass

        ### ----------- root test ---------------- ###
        lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
        lim_evaluated = lim.doit()
        if lim_evaluated.is_number:
            if lim_evaluated < 1:
                return S.true
            if lim_evaluated > 1:
                return S.false

        ### ------------- alternating series test ----------- ###
        dict_val = sequence_term.match((-1)**(sym + p)*q)
        if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
            return S.true

        ### ------------- comparison test ------------- ###
        # (1/log(n)**p) comparison
        log_test = order.expr.match(1/(log(sym)**p))
        if log_test is not None:
            return S.false

        # (1/(n*log(n)**p)) comparison
        log_n_test = order.expr.match(1/(sym*(log(sym))**p))
        if log_n_test is not None:
            if log_n_test[p] > 1:
                return S.true
            return S.false

        # (1/(n*log(n)*log(log(n))*p)) comparison
        log_log_n_test = order.expr.match(1/(sym*(log(sym)*log(log(sym))**p)))
        if log_log_n_test is not None:
            if log_log_n_test[p] > 1:
                return S.true
            return S.false

        # (1/(n**p*log(n))) comparison
开发者ID:carstimon,项目名称:sympy,代码行数:70,代码来源:summations.py

示例2: test_doit

# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]
def test_doit():
    f = Integral(2 * x, x)
    l = Limit(f, x, oo)
    assert l.doit() == oo
开发者ID:AdrianPotter,项目名称:sympy,代码行数:6,代码来源:test_limits.py

示例3: test_doit2

# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]
def test_doit2():
    f = Integral(2 * x, x)
    l = Limit(f, x, oo)
    # limit() breaks on the contained Integral.
    assert l.doit(deep=False) == l
开发者ID:AdrianPotter,项目名称:sympy,代码行数:7,代码来源:test_limits.py

示例4: is_convergent

# 需要导入模块: from sympy import Limit [as 别名]
# 或者: from sympy.Limit import doit [as 别名]
    def is_convergent(self):
        """
        Convergence tests are used for checking the convergence of
        a series. There are various tests employed to check the convergence,
        returns true if convergent and false if divergent and NotImplementedError
        if can not be checked. Like divergence test, root test, integral test,
        alternating series test, comparison tests, Dirichlet tests.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Convergence_tests

        Examples
        ========

        >>> from sympy import Interval, factorial, S, Sum, Symbol, oo
        >>> n = Symbol('n', integer=True)
        >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
        True
        >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
        False
        >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
        False
        >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
        True

        See Also
        ========

        Sum.is_absolute_convergent()
        """
        from sympy import Interval, Integral, Limit, log, symbols, Ge, Gt, simplify
        p, q = symbols('p q', cls=Wild)

        sym = self.limits[0][0]
        lower_limit = self.limits[0][1]
        upper_limit = self.limits[0][2]
        sequence_term = self.function

        if len(sequence_term.free_symbols) > 1:
            raise NotImplementedError("convergence checking for more that one symbol \
                                        containing series is not handled")

        if lower_limit.is_finite and upper_limit.is_finite:
            return S.true

        # transform sym -> -sym and swap the upper_limit = S.Infinity and lower_limit = - upper_limit
        if lower_limit is S.NegativeInfinity:
            if upper_limit is S.Infinity:
                return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
                        Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
            sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
            lower_limit = -upper_limit
            upper_limit = S.Infinity

        interval = Interval(lower_limit, upper_limit)

        # Piecewise function handle
        if sequence_term.is_Piecewise:
            for func_cond in sequence_term.args:
                if func_cond[1].func is Ge or func_cond[1].func is Gt or func_cond[1] == True:
                    return Sum(func_cond[0], (sym, lower_limit, upper_limit)).is_convergent()
            return S.true

        ###  -------- Divergence test ----------- ###
        try:
            lim_val = limit(abs(sequence_term), sym, upper_limit)
            if lim_val.is_number and lim_val != S.Zero:
                return S.false
        except NotImplementedError:
            pass

        order = O(sequence_term, (sym, S.Infinity))

        ### --------- p-series test (1/n**p) ---------- ###
        p1_series_test = order.expr.match(sym**p)
        if p1_series_test is not None:
            if p1_series_test[p] < -1:
                return S.true
            if p1_series_test[p] > -1:
                return S.false

        p2_series_test = order.expr.match((1/sym)**p)
        if p2_series_test is not None:
            if p2_series_test[p] > 1:
                return S.true
            if p2_series_test[p] < 1:
                return S.false

        ### ----------- root test ---------------- ###
        lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
        lim_evaluated = lim.doit()
        if lim_evaluated.is_number:
            if lim_evaluated < 1:
                return S.true
            if lim_evaluated > 1:
                return S.false

        ### ------------- alternating series test ----------- ###
#.........这里部分代码省略.........
开发者ID:MechCoder,项目名称:sympy,代码行数:103,代码来源:summations.py


注:本文中的sympy.Limit.doit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。