本文整理汇总了Python中sympy.Integral.n方法的典型用法代码示例。如果您正苦于以下问题:Python Integral.n方法的具体用法?Python Integral.n怎么用?Python Integral.n使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.Integral
的用法示例。
在下文中一共展示了Integral.n方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_is_number
# 需要导入模块: from sympy import Integral [as 别名]
# 或者: from sympy.Integral import n [as 别名]
def test_is_number():
from sympy.abc import x, y, z
from sympy import cos, sin
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
# `foo.is_number` should always be eqivalent to `not foo.free_symbols`
# in each of these cases, there are pseudo-free symbols
i = Integral(x, (y, 1, 1))
assert i.is_number is False and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is False and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is False and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
示例2: test_is_number
# 需要导入模块: from sympy import Integral [as 别名]
# 或者: from sympy.Integral import n [as 别名]
def test_is_number():
from sympy.abc import x, y, z
from sympy import cos, sin
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
i = Integral(x, (y, 1, 1))
assert i.is_number is True and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is True and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is True and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
示例3: test_literal_evalf_is_number_is_zero_is_comparable
# 需要导入模块: from sympy import Integral [as 别名]
# 或者: from sympy.Integral import n [as 别名]
def test_literal_evalf_is_number_is_zero_is_comparable():
from sympy.integrals.integrals import Integral
from sympy.core.symbol import symbols
from sympy.core.function import Function
from sympy.functions.elementary.trigonometric import cos, sin
x = symbols('x')
f = Function('f')
# issue 5033
assert f.is_number is False
# issue 6646
assert f(1).is_number is False
i = Integral(0, (x, x, x))
# expressions that are symbolically 0 can be difficult to prove
# so in case there is some easy way to know if something is 0
# it should appear in the is_zero property for that object;
# if is_zero is true evalf should always be able to compute that
# zero
assert i.n() == 0
assert i.is_zero
assert i.is_number is False
assert i.evalf(2, strict=False) == 0
# issue 10268
n = sin(1)**2 + cos(1)**2 - 1
assert n.is_comparable is False
assert n.n(2).is_comparable is False
assert n.n(2).n(2).is_comparable
示例4: test_as_sum_midpoint1
# 需要导入模块: from sympy import Integral [as 别名]
# 或者: from sympy.Integral import n [as 别名]
def test_as_sum_midpoint1():
e = Integral(sqrt(x ** 3 + 1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8 * sqrt(217)
assert e.as_sum(2, method="midpoint") == 4 * sqrt(65) + 12 * sqrt(57)
assert e.as_sum(3, method="midpoint") == 8 * sqrt(217) / 3 + 8 * sqrt(3081) / 27 + 8 * sqrt(52809) / 27
assert e.as_sum(4, method="midpoint") == 2 * sqrt(730) + 4 * sqrt(7) + 4 * sqrt(86) + 6 * sqrt(14)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x ** 3 + y ** 3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, "e.as_sum(4)")
示例5: test_as_sum_midpoint1
# 需要导入模块: from sympy import Integral [as 别名]
# 或者: from sympy.Integral import n [as 别名]
def test_as_sum_midpoint1():
e = Integral(sqrt(x**3+1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8*217**(S(1)/2)
assert e.as_sum(2, method="midpoint") == 4*65**(S(1)/2) + 12*57**(S(1)/2)
assert e.as_sum(3, method="midpoint") == 8*217**(S(1)/2)/3 + \
8*3081**(S(1)/2)/27 + 8*52809**(S(1)/2)/27
assert e.as_sum(4, method="midpoint") == 2*730**(S(1)/2) + \
4*7**(S(1)/2) + 4*86**(S(1)/2) + 6*14**(S(1)/2)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x**3+y**3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, "e.as_sum(4)")