本文整理汇总了Python中sympy.Function类的典型用法代码示例。如果您正苦于以下问题:Python Function类的具体用法?Python Function怎么用?Python Function使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Function类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: idiff
def idiff(eq, y, x, n=1):
"""Return ``dy/dx`` assuming that ``eq == 0``.
Parameters
==========
y : the dependent variable or a list of dependent variables (with y first)
x : the variable that the derivative is being taken with respect to
n : the order of the derivative (default is 1)
Examples
========
>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff
>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
-(x**2 + y**2)/y**3
Here, ``a`` is assumed to be independent of ``x``:
>>> idiff(x + a + y, y, x)
-1
Now the x-dependence of ``a`` is made explicit by listing ``a`` after
``y`` in a list.
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
See Also
========
sympy.core.function.Derivative: represents unevaluated derivatives
sympy.core.function.diff: explicitly differentiates wrt symbols
"""
if is_sequence(y):
dep = set(y)
y = y[0]
elif isinstance(y, Symbol):
dep = set([y])
else:
raise ValueError("expecting x-dependent symbol(s) but got: %s" % y)
f = dict([(s, Function(
s.name)(x)) for s in eq.atoms(Symbol) if s != x and s in dep])
dydx = Function(y.name)(x).diff(x)
eq = eq.subs(f)
derivs = {}
for i in range(n):
yp = solve(eq.diff(x), dydx)[0].subs(derivs)
if i == n - 1:
return yp.subs([(v, k) for k, v in f.items()])
derivs[dydx] = yp
eq = dydx - yp
dydx = dydx.diff(x)
示例2: _main
def _main(expr):
_new = []
for a in expr.args:
is_V = False
if isinstance(a, V):
is_V = True
a = a.expr
if a.is_Derivative:
variables = a.atoms()
func = a.expr
variables.add(func)
name = a.expr.__class__.__name__
if ',' in name:
a = Function('%s' % name +
''.join(map(str, a.variables)))(*variables)
else:
a = Function('%s' % name + ',' +
''.join(map(str, a.variables)))(*variables)
#TODO add more, maybe all that have args
elif a.is_Add or a.is_Mul or a.is_Pow:
a = _main(a)
if is_V:
a = V(a)
a.function = func
_new.append( a )
return expr.func(*tuple(_new))
示例3: test_latex_printer
def test_latex_printer():
r = Function('r')('t')
assert VectorLatexPrinter().doprint(r ** 2) == "r^{2}"
r2 = Function('r^2')('t')
assert VectorLatexPrinter().doprint(r2.diff()) == r'\dot{r^{2}}'
ra = Function('r__a')('t')
assert VectorLatexPrinter().doprint(ra.diff().diff()) == r'\ddot{r^{a}}'
示例4: test_noncommutative_issue_15131
def test_noncommutative_issue_15131():
x = Symbol('x', commutative=False)
t = Symbol('t', commutative=False)
fx = Function('Fx', commutative=False)(x)
ft = Function('Ft', commutative=False)(t)
A = Symbol('A', commutative=False)
eq = fx * A * ft
eqdt = eq.diff(t)
assert eqdt.args[-1] == ft.diff(t)
示例5: test_issue_7687
def test_issue_7687():
from sympy.core.function import Function
from sympy.abc import x
f = Function('f')(x)
ff = Function('f')(x)
match_with_cache = ff.matches(f)
assert isinstance(f, type(ff))
clear_cache()
ff = Function('f')(x)
assert isinstance(f, type(ff))
assert match_with_cache == ff.matches(f)
示例6: test_lambdify_Derivative_arg_issue_16468
def test_lambdify_Derivative_arg_issue_16468():
f = Function('f')(x)
fx = f.diff()
assert lambdify((f, fx), f + fx)(10, 5) == 15
assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2
raises(SyntaxError, lambda:
eval(lambdastr((f, fx), f/fx, dummify=False)))
assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2
assert eval(lambdastr((fx, f), f/fx, dummify=True))(10, 5) == S.Half
assert lambdify(fx, 1 + fx)(41) == 42
assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
示例7: test_find_simple_recurrence
def test_find_simple_recurrence():
a = Function('a')
n = Symbol('n')
assert find_simple_recurrence([fibonacci(k) for k in range(12)]) == (
-a(n) - a(n + 1) + a(n + 2))
f = Function('a')
i = Symbol('n')
a = [1, 1, 1]
for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
assert find_simple_recurrence(a, A=f, N=i) == (
-8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3))
assert find_simple_recurrence([0, 2, 15, 74, 12, 3, 0,
1, 2, 85, 4, 5, 63]) == 0
示例8: test_simple
def test_simple():
sympy.var('x, y, r')
u = Function('u')(x, y)
w = Function('w')(x, y)
f = Function('f')(x, y)
e = (u.diff(x) + 1./2*w.diff(x,x)**2)*f.diff(x,y) \
+ w.diff(x,y)*f.diff(x,x)
return Vexpr(e, u, w)
示例9: test_solve_for_functions_derivatives
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11,a12,a21,a22,b1,b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x : (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y : (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t) : (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t) : (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t)-1, x.diff(t)) == [1]
assert solve(3*x.diff(t)-2, x.diff(t)) == [Rational(2,3)]
eqns = set((3*x - 1, 2*y-4))
assert solve(eqns, set((x,y))) == { x : Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [-((x - 2)/f(x))]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t) : (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x : (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
示例10: Function
Lagrange formalism
@author: Topher
"""
from __future__ import division
import sympy as sp
from sympy import sin,cos,Function
t = sp.Symbol('t')
params = sp.symbols('M , G , J , J_ball , R')
M , G , J , J_ball , R = params
# ball position r
r_t = Function('r')(t)
d_r_t = r_t.diff(t)
dd_r_t = r_t.diff(t,2)
# beam angle theta
theta_t = Function('theta')(t)
d_theta_t = theta_t.diff(t)
dd_theta_t = theta_t.diff(t,2)
# torque of the beam
tau = Function('tau')
# kinetic energy
T = ((M + J_ball/R**2)*d_r_t**2 + (J + M*r_t**2 + J_ball)*d_theta_t**2)/2
# potential energy
V = M*G*r_t*sin(theta_t)
示例11: _test_f
def _test_f():
# FIXME: we get infinite recursion here:
f = Function("f")
assert residue(f(x)/x**5, x, 0) == f.diff(x, 4)/24
示例12: open
import sys
import numpy as np
import sympy as sm
from sympy.solvers import solve
from sympy import Symbol, Function
import GUI as gui
import math
GCodeFile = open('C:\\3D Printer Calculus Project\\docs\\Sample.txt', 'w+')
x = Symbol('x')
f = Function('f')(x)
f = 0.5*x
xVals = []
yVals = []
zVals = []
SideArray = []
TotalVolume = 0
AxisChoice = gui.AxisRevScreen()
if AxisChoice == "X-axis":
Bounds = gui.BoundsScreen()
FirstBound = int(Bounds[0])
FinalBound = int(Bounds[1])
xInitialVal = FirstBound
yInitialVal = f.subs(x, FirstBound)
zInitialVal = 0
xVals.append(xInitialVal)
yVals.append(yInitialVal)
zVals.append(zInitialVal)
FinalBound1 = int(FinalBound * 10)
FirstBound1 = int(FirstBound * 10)
for t in range (FirstBound1, FinalBound1):
### This for loop generates the x coordinates ###
示例13: symbols
from numpy import array, arange
from sympy import symbols, Function, S, solve, simplify, \
collect, Matrix, lambdify
from pydy import ReferenceFrame, cross, dot, dt, express, expression2vector, \
coeff
m, g, r1, r2, t = symbols("m, g r1 r2 t")
au1, au2, au3 = symbols("au1 au2 au3")
cf1, cf2, cf3 = symbols("cf1 cf2 cf3")
I, J = symbols("I J")
u3p, u4p, u5p = symbols("u3p u4p u5p")
q1 = Function("q1")(t)
q2 = Function("q2")(t)
q3 = Function("q3")(t)
q4 = Function("q4")(t)
q5 = Function("q5")(t)
def eval(a):
subs_dict = {
u3.diff(t): u3p,
u4.diff(t): u4p,
u5.diff(t): u5p,
r1:1,
r2:0,
m:1,
g:1,
I:1,
J:1,
}
示例14: latex
print "r =", g2
#Propagation constants along the axes are related
g3 = alpha1**2 + beta1**2 + gamma1**2
# Simplifying
g3=g3.subs(sin(phi)**2, 1-cos(phi)**2).expand().simplify()
print r'%\alpha^{2} + \beta^{2} + \gamma^{2} = ', latex(g3)
x_hat = Matrix([
rho * sin(theta) * cos(phi),
rho * sin(theta) * sin(phi),
rho * cos(theta)])
psi = Function("psi")
psi =exp(I*omega*t) * exp(-I*g2)
print "\Psi =", latex(psi)
#Derivatives of the wave function of the coordinates
dpsidx=psi.diff(x)
dpsidx=dpsidx.subs(psi,'Psi').expand().simplify()
print "d \Psi / dx =", latex(dpsidx)
dpsidy=psi.diff(y)
dpsidy=dpsidy.subs(psi,'Psi').expand().simplify()
print "d \Psi / dy =", latex(dpsidy)
dpsidz=psi.diff(z)
dpsidz=dpsidz.subs(psi,'Psi').expand().simplify()
示例15: test_cylinder_clpt
def test_cylinder_clpt():
'''Test case where the functional corresponds to the internal energy of
a cylinder using the Classical Laminated Plate Theory (CLPT)
'''
from sympy import Matrix
sympy.var('x, y, r')
sympy.var('B11, B12, B16, B21, B22, B26, B61, B62, B66')
sympy.var('D11, D12, D16, D21, D22, D26, D61, D62, D66')
# displacement field
u = Function('u')(x, y)
v = Function('v')(x, y)
w = Function('w')(x, y)
# stress function
f = Function('f')(x, y)
# laminate constitute matrices B represents B*, see Jones (1999)
B = Matrix([[B11, B12, B16],
[B21, B22, B26],
[B61, B62, B66]])
# D represents D*, see Jones (1999)
D = Matrix([[D11, D12, D16],
[D12, D22, D26],
[D16, D26, D66]])
# strain-diplacement equations
e = Matrix([[u.diff(x) + 1./2*w.diff(x)**2],
[v.diff(y) + 1./r*w + 1./2*w.diff(y)**2],
[u.diff(y) + v.diff(x) + w.diff(x)*w.diff(y)]])
k = Matrix([[ -w.diff(x, x)],
[ -w.diff(y, y)],
[-2*w.diff(x, y)]])
# representing the internal forces using the stress function
N = Matrix([[ f.diff(y, y)],
[ f.diff(x, x)],
[ -f.diff(x, y)]])
functional = N.T*V(e) - N.T*B*V(k) + k.T*D.T*V(k)
return Vexpr(functional, u, v, w)