当前位置: 首页>>代码示例>>Python>>正文


Python FiniteSet.union方法代码示例

本文整理汇总了Python中sympy.FiniteSet.union方法的典型用法代码示例。如果您正苦于以下问题:Python FiniteSet.union方法的具体用法?Python FiniteSet.union怎么用?Python FiniteSet.union使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.FiniteSet的用法示例。


在下文中一共展示了FiniteSet.union方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Type_A_Interval_III

# 需要导入模块: from sympy import FiniteSet [as 别名]
# 或者: from sympy.FiniteSet import union [as 别名]
class Type_A_Interval_III(object):
    #generate interval of type: {x, y, ...} (Finite set) or a Singleton - must not result in an EmptySet()
    def __init__(self):
        self.set_str = ""
        self.val_lst = []
        self.interval = FiniteSet()
        
    def generate_interval(self):
        if randint(0, 1) == 0:
            #generate FiniteSet
            amount = randint(1, 5)
            for i in range(amount):
                if self.val_lst == []:
                    self.val_lst.append(randint(-15,15))
                else:
                    self.val_lst.append(randint(self.val_lst[i-1]-5, self.val_lst[i-1]+5))
        else:
            #generate Singleton
            self.val_lst.append(randint(-20, 20))
            
        for i in range(len(self.val_lst)):
            self.interval = self.interval.union(FiniteSet(self.val_lst[i]))
            
        self.set_str += '\{'+str(self.interval)+'\}'
开发者ID:prinzhf,项目名称:offset,代码行数:26,代码来源:intervals_A.py

示例2: set_second_part

# 需要导入模块: from sympy import FiniteSet [as 别名]
# 或者: from sympy.FiniteSet import union [as 别名]
 def set_second_part(self, num, element):
     set_str = ""
     #set_type = choice(['finite_set', 'infinite_set', 'empty_set', 'powerset'])
     #self.set_type = choice(['empty_set', 'finite_set', 'infinite_set'])
     self.set_type = choice(['infinite_set', 'empty_set', 'finite_set'])
     uberset = ""
     x = 0
     y = 0
     temp_str = ''
     temp_set = None
     
     #generate set in formal notation: {x | x in R and ...}
     if num == 0:
         uberset = self.f_set_dict[element] if element != 'x' else self.f_set_dict[choice(list(self.f_set_dict.keys()))]
         set_str += ' \ | \ '+element+'\in'+uberset
         set_str += '\wedge \ '
         if self.set_type == 'finite_set':
             self.set_description[0] = 'finite_set'
             c = choice([0, 1, 2, 3])
             if c == 0:
                 temp_set = FiniteSet(1) if uberset == '\mathbb N_{> 0}' else FiniteSet(0, 1)
                 set_str += element+'^{2} = \ '+element
                 self.set_description[1] = '\{'+str(temp_set)+'\}'
                 self.set_description[2] = temp_set
             elif c == 1:
                 x = randint(0, 5) if element == 'n' else randint(-5, 0)
                 y = randint(5, 10) if element == 'n' else randint(0, 5)
                 fin_set = FiniteSet()
                 for i in range(x+1, y, 1):
                     fin_set = fin_set.union(FiniteSet(i))
                 if element == 'n' or element == 'z':
                     set_str += element+'\in \ ('+str(x)+', '+str(y)+')'
                     self.set_description[1] = '\{'+str(fin_set)+'\}'
                     self.set_description[2] = fin_set
                 else:
                     x = randint(1, 99)
                     set_str += element+'\subseteq \ \{'+str(x)+'\}'
                     self.set_description[1] = '\{\emptyset, '+str(x)+'\}'
                     self.set_description[2] = FiniteSet(EmptySet(), x)
             elif c == 2:
                 if choice([0, 1]) == 0:
                     x = randint(-5, -5)
                     y = randint(-5, 5)
                     set_str = '\{'+str(x)+', '+str(y)+'\}'
                     self.set_description[1] = '\{'+str(FiniteSet(x, y))+'\}'
                     self.set_description[2] = FiniteSet(x, y)
                 else:
                     x = choice([x for x in np.arange(0, 99) if sqrt(x).is_integer()])
                     set_str += '\sqrt{'+element+'} = '+str(int(sqrt(x)))
                    
                     self.set_description[1] = '\{'+str(x)+'\}'
                     self.set_description[2] = FiniteSet(x)
             elif c == 3:
                 element+'\\textless 2 \wedge'+element+'\in \mathbb{N}'                    
                 if uberset == '\mathbb N_{> 0}':
                     temp_set = FiniteSet(1)
                 elif uberset == '\mathbb{N}':
                     temp_set = FiniteSet(0, 1)
                 else:
                     temp_set = FiniteSet(0, 1)
                 set_str += element+'^{2} = \ '+element
                 self.set_description[1] = '\{'+str(temp_set)+'\}'
                 self.set_description[2] = temp_set
                     
         elif self.set_type == 'infinite_set':
             self.set_description[0] = 'infinite_set'
             if element == 'n':
                 if choice([0, 1]) == 0:
                     set_str += element+'> 0'
                     self.set_description[1] = '\mathbb N_{> 0}'
                     self.set_description[2] = 'NPOS'
                 else:
                     set_str += element+'\in \mathbb{Z}'
                     self.set_description[1] = '\mathbb{N}'
                     self.set_description[2] = 'N'
             elif element == 'z':
                 if choice([0, 1]) == 0:
                     set_str += element+'\geq 0'
                     self.set_description[1] = '\mathbb{N}'
                     self.set_description[2] = 'N'
                 else:
                     set_str += '0 > '+element
                     self.set_description[1] = 'ZNEG'
                     self.set_description[2] = '-Z'
             elif element == 'q':
                 if choice([0, 1]) == 0:
                     set_str += element+'\in \mathbb{Z}'
                     self.set_description[1] = '\mathbb{Z}'
                     self.set_description[2] = 'Z'
                 else:
                     set_str += element+' \in \mathbb{Q}'
                     self.set_description[1] = 'Q'
                     self.set_description[2] = QQ 
             elif element == 'r':
                 if choice([0, 1]) == 0:
                     set_str += element+'^{2} \in \mathbb{N}'
                     self.set_description[0] = 'finite_set'
                     self.set_description[1] = '\{'+str(FiniteSet(0, 1))+'\}'
                     self.set_description[2] = FiniteSet(0, 1)
                 else:
#.........这里部分代码省略.........
开发者ID:prinzhf,项目名称:offset,代码行数:103,代码来源:set_templates_A.py

示例3: FiniteSet

# 需要导入模块: from sympy import FiniteSet [as 别名]
# 或者: from sympy.FiniteSet import union [as 别名]
from sympy import FiniteSet, pi
# Unions & Intersections
s = FiniteSet(1, 2, 3)
t = FiniteSet(2, 4, 6)

union = s.union(t)
print(union)

intersection = s.intersect(t)
print(intersection)

### Cartesian Products
cartesianProduct = s * t
print(cartesianProduct)

for elem in cartesianProduct:
    print(elem)

# Raise set to the power (calculate triplets)
cartesianProductCubed = s ** 3
for elem in cartesianProductCubed:
    print(elem)




def time_period(length, g):
    T = 2*pi*(length/g)**0.5
    return T

L = FiniteSet(15, 18, 21, 22.5, 25)
开发者ID:JSONMartin,项目名称:codingChallenges,代码行数:33,代码来源:sympy_operations.py

示例4: FiniteSet

# 需要导入模块: from sympy import FiniteSet [as 别名]
# 或者: from sympy.FiniteSet import union [as 别名]
from sympy import FiniteSet
s = FiniteSet(1, 2, 3, 4, 5, 6)
a = FiniteSet(2, 3, 5)
b = FiniteSet(1, 3, 5)
e = a.union(b)
print(len(e)/len(s))

# from sympy import FiniteSet
# s = FiniteSet(1, 2, 3, 4, 5, 6)
# a = FiniteSet(2, 3, 5)
# b = FiniteSet(1, 3, 5)
# e = a.intersect(b)
# print(len(e)/len(s))
开发者ID:KentFujii,项目名称:doing_math,代码行数:15,代码来源:probability.py

示例5: FiniteSet

# 需要导入模块: from sympy import FiniteSet [as 别名]
# 或者: from sympy.FiniteSet import union [as 别名]
Conjunto y operaciones con conjuntos usando la libreria SYMPY
"""

# Utilizando FiniteSet de sympy
from sympy import FiniteSet
C = FiniteSet(1, 2, 3)

# Subconjunto y subconjunto propio
A = FiniteSet(1,2,3)
B = FiniteSet(1,2,3,4,5)
A.subset(B)

# Union de dos conjuntos
A = FiniteSet(1, 2, 3)
B = FiniteSet(2, 4, 6)
A.union(B)


# Interseccion de dos conjuntos
A = FiniteSet(1, 2) 
B = FiniteSet(2, 3) 
A.intersect(B)


# Diferencia entre conjuntos
print A - B


# Calculando el producto cartesiano. 
A = FiniteSet(1, 2)
B = FiniteSet(3, 4)
开发者ID:josearcosaneas,项目名称:Matematicas-con-Python,代码行数:33,代码来源:conjuntos.py


注:本文中的sympy.FiniteSet.union方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。