本文整理汇总了Python中sympy.radsimp函数的典型用法代码示例。如果您正苦于以下问题:Python radsimp函数的具体用法?Python radsimp怎么用?Python radsimp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了radsimp函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sqrtdenest
def test_sqrtdenest():
d = {sqrt(5 + 2 * sqrt(6)): sqrt(2) + sqrt(3),
sqrt(sqrt(2)): sqrt(sqrt(2)),
sqrt(5+sqrt(7)): sqrt(5+sqrt(7)),
sqrt(3+sqrt(5+2*sqrt(7))):
sqrt(6+3*sqrt(7))/(sqrt(2)*(5+2*sqrt(7))**Rational(1,4)) +
3*(5+2*sqrt(7))**Rational(1,4)/(sqrt(2)*sqrt(6+3*sqrt(7))),
sqrt(3+2*sqrt(3)): 3**Rational(1,4)/sqrt(2)+3/(sqrt(2)*3**Rational(1,4))}
for i in d:
assert sqrtdenest(i) == d[i] or denester([i])[0] == d[i]
# this test caused a pattern recognition failure in sqrtdenest
# nest = sqrt(2) + sqrt(5) - sqrt(7)
nest = symbols('nest')
x0, x1, x2, x3, x4, x5, x6 = symbols('x:7')
l = sqrt(2) + sqrt(5)
r = sqrt(7) + nest
s = (l**2 - r**2).expand() + nest**2 # == nest**2
ok = solve(nest**4 - s**2, nest)[1] # this will change if results order changes
assert abs((l - r).subs(nest, ok).n()) < 1e-12
x0 = sqrt(3)
x2 = root(45*I*x0 - 28, 3)
x3 = 19/x2
x4 = x2 + x3
x5 = -x4 - 14
x6 = sqrt(-x5)
ans = -x0*x6/3 + x0*sqrt(-x4 + 28 - 6*sqrt(210)*x6/x5)/3
assert expand_mul(radsimp(ok) - ans) == 0
# issue 2554
eq = sqrt(sqrt(sqrt(2) + 2) + 2)
assert sqrtdenest(eq) == eq
示例2: __vector_fast_compare
def __vector_fast_compare(a, b):
if a == b:
return True
a_matrix = a.to_matrix(ARM_FRAME)
b_matrix = b.to_matrix(ARM_FRAME)
if a_matrix == b_matrix:
return True
found_difference = False
for ea, eb in zip(a_matrix.tolist(), b_matrix.tolist()):
ea = ea[0]
eb = eb[0]
if sympy.radsimp(ea) != sympy.radsimp(eb):
found_difference = True
break
if not found_difference:
return True
return sympy.Eq(a_matrix, b_matrix) == 0
示例3: test_action_verbs
def test_action_verbs():
assert nsimplify((1/(exp(3*pi*x/5)+1))) == (1/(exp(3*pi*x/5)+1)).nsimplify()
assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep = True)
assert radsimp(1/(2+sqrt(2))) == (1/(2+sqrt(2))).radsimp()
assert powsimp(x**y*x**z*y**z, combine='all') == (x**y*x**z*y**z).powsimp(combine='all')
assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
assert together(1/x + 1/y) == (1/x + 1/y).together()
assert separate((x*(y*z)**3)**2) == ((x*(y*z)**3)**2).separate()
assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == (a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
assert apart(y/(y+2)/(y+1), y) == (y/(y+2)/(y+1)).apart(y)
assert combsimp(y/(x+2)/(x+1)) == (y/(x+2)/(x+1)).combsimp()
assert factor(x**2+5*x+6) == (x**2+5*x+6).factor()
assert refine(sqrt(x**2)) == sqrt(x**2).refine()
assert cancel((x**2+5*x+6)/(x+2)) == ((x**2+5*x+6)/(x+2)).cancel()
示例4: test_radsimp_issue_3214
def test_radsimp_issue_3214():
c, p = symbols('c p', positive=True)
s = sqrt(c**2 - p**2)
b = (c + I*p - s)/(c + I*p + s)
assert radsimp(b) == -I*(c + I*p - sqrt(c**2 - p**2))**2/(2*c*p)
示例5: test_radsimp
def test_radsimp():
r2 = sqrt(2)
r3 = sqrt(3)
r5 = sqrt(5)
r7 = sqrt(7)
assert fraction(radsimp(1/r2)) == (sqrt(2), 2)
assert radsimp(1/(1 + r2)) == \
-1 + sqrt(2)
assert radsimp(1/(r2 + r3)) == \
-sqrt(2) + sqrt(3)
assert fraction(radsimp(1/(1 + r2 + r3))) == \
(-sqrt(6) + sqrt(2) + 2, 4)
assert fraction(radsimp(1/(r2 + r3 + r5))) == \
(-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12)
assert fraction(radsimp(1/(1 + r2 + r3 + r5))) == (
(-34*sqrt(10) - 26*sqrt(15) - 55*sqrt(3) - 61*sqrt(2) + 14*sqrt(30) +
93 + 46*sqrt(6) + 53*sqrt(5), 71))
assert fraction(radsimp(1/(r2 + r3 + r5 + r7))) == (
(-50*sqrt(42) - 133*sqrt(5) - 34*sqrt(70) - 145*sqrt(3) + 22*sqrt(105)
+ 185*sqrt(2) + 62*sqrt(30) + 135*sqrt(7), 215))
z = radsimp(1/(1 + r2/3 + r3/5 + r5 + r7))
assert len((3616791619821680643598*z).args) == 16
assert radsimp(1/z) == 1/z
assert radsimp(1/z, max_terms=20).expand() == 1 + r2/3 + r3/5 + r5 + r7
assert radsimp(1/(r2*3)) == \
sqrt(2)/6
assert radsimp(1/(r2*a + r3 + r5 + r7)) == (
(8*sqrt(2)*a**7 - 8*sqrt(7)*a**6 - 8*sqrt(5)*a**6 - 8*sqrt(3)*a**6 -
180*sqrt(2)*a**5 + 8*sqrt(30)*a**5 + 8*sqrt(42)*a**5 + 8*sqrt(70)*a**5
- 24*sqrt(105)*a**4 + 84*sqrt(3)*a**4 + 100*sqrt(5)*a**4 +
116*sqrt(7)*a**4 - 72*sqrt(70)*a**3 - 40*sqrt(42)*a**3 -
8*sqrt(30)*a**3 + 782*sqrt(2)*a**3 - 462*sqrt(3)*a**2 -
302*sqrt(7)*a**2 - 254*sqrt(5)*a**2 + 120*sqrt(105)*a**2 -
795*sqrt(2)*a - 62*sqrt(30)*a + 82*sqrt(42)*a + 98*sqrt(70)*a -
118*sqrt(105) + 59*sqrt(7) + 295*sqrt(5) + 531*sqrt(3))/(16*a**8 -
480*a**6 + 3128*a**4 - 6360*a**2 + 3481))
assert radsimp(1/(r2*a + r2*b + r3 + r7)) == (
(sqrt(2)*a*(a + b)**2 - 5*sqrt(2)*a + sqrt(42)*a + sqrt(2)*b*(a +
b)**2 - 5*sqrt(2)*b + sqrt(42)*b - sqrt(7)*(a + b)**2 - sqrt(3)*(a +
b)**2 - 2*sqrt(3) + 2*sqrt(7))/(2*a**4 + 8*a**3*b + 12*a**2*b**2 -
20*a**2 + 8*a*b**3 - 40*a*b + 2*b**4 - 20*b**2 + 8))
assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \
sqrt(2)/(2*a + 2*b + 2*c + 2*d)
assert radsimp(1/(1 + r2*a + r2*b + r2*c + r2*d)) == (
(sqrt(2)*a + sqrt(2)*b + sqrt(2)*c + sqrt(2)*d - 1)/(2*a**2 + 4*a*b +
4*a*c + 4*a*d + 2*b**2 + 4*b*c + 4*b*d + 2*c**2 + 4*c*d + 2*d**2 - 1))
assert radsimp((y**2 - x)/(y - sqrt(x))) == \
sqrt(x) + y
assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \
-(sqrt(x) + y)
assert radsimp(1/(1 - I + a*I)) == \
(-I*a + 1 + I)/(a**2 - 2*a + 2)
assert radsimp(1/((-x + y)*(x - sqrt(y)))) == \
(-x - sqrt(y))/((x - y)*(x**2 - y))
e = (3 + 3*sqrt(2))*x*(3*x - 3*sqrt(y))
assert radsimp(e) == x*(3 + 3*sqrt(2))*(3*x - 3*sqrt(y))
assert radsimp(1/e) == (
(-9*x + 9*sqrt(2)*x - 9*sqrt(y) + 9*sqrt(2)*sqrt(y))/(9*x*(9*x**2 -
9*y)))
assert radsimp(1 + 1/(1 + sqrt(3))) == \
Mul(S.Half, -1 + sqrt(3), evaluate=False) + 1
A = symbols("A", commutative=False)
assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == \
x**2 + sqrt(2)*x**2 - sqrt(2)*x*A
assert radsimp(1/sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3)
assert radsimp(1/sqrt(5 + 2 * sqrt(6))**3) == -(-sqrt(3) + sqrt(2))**3
# issue 6532
assert fraction(radsimp(1/sqrt(x))) == (sqrt(x), x)
assert fraction(radsimp(1/sqrt(2*x + 3))) == (sqrt(2*x + 3), 2*x + 3)
assert fraction(radsimp(1/sqrt(2*(x + 3)))) == (sqrt(2*x + 6), 2*x + 6)
# issue 5994
e = S('-(2 + 2*sqrt(2) + 4*2**(1/4))/'
'(1 + 2**(3/4) + 3*2**(1/4) + 3*sqrt(2))')
assert radsimp(e).expand() == -2*2**(S(3)/4) - 2*2**(S(1)/4) + 2 + 2*sqrt(2)
# issue 5986 (modifications to radimp didn't initially recognize this so
# the test is included here)
assert radsimp(1/(-sqrt(5)/2 - S(1)/2 + (-sqrt(5)/2 - S(1)/2)**2)) == 1
# from issue 5934
eq = (
(-240*sqrt(2)*sqrt(sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) -
360*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) -
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) +
120*sqrt(2)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5) +
120*sqrt(10)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5))/(-36000 -
7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) +
24*sqrt(10)*sqrt(-sqrt(5) + 5))**2))
assert radsimp(eq) is S.NaN # it's 0/0
# work with normal form
e = 1/sqrt(sqrt(7)/7 + 2*sqrt(2) + 3*sqrt(3) + 5*sqrt(5)) + 3
assert radsimp(e) == (
-sqrt(sqrt(7) + 14*sqrt(2) + 21*sqrt(3) +
35*sqrt(5))*(-11654899*sqrt(35) - 1577436*sqrt(210) - 1278438*sqrt(15)
- 1346996*sqrt(10) + 1635060*sqrt(6) + 5709765 + 7539830*sqrt(14) +
#.........这里部分代码省略.........
示例6: test_radsimp
def test_radsimp():
assert radsimp(A*B - B*A) == A*B - B*A
示例7: RigidBody
rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))
bodies = [rbA, rbB, rbC]
# forces, torques
forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
torques = []
# collect all significant points/frames of the system
system = [y for x in bodies for y in [x.masscenter, x.frame]]
system += [x[0] for x in forces + torques]
# partial velocities
partials = partial_velocities(system, [u1, u2, u3], F,
kde_map, express_frame=A)
# Fr, Fr*
Fr, _ = generalized_active_forces(partials, forces + torques, uaux=[u3])
Fr_star, _ = generalized_inertia_forces(partials, bodies, kde_map, uaux=[u3])
friction = -u_prime*Q1*(pQ.vel(F).normalize().express(A)).subs(u3, 0)
Q_map = dict(zip([Q2, Q3], [dot(friction, x) for x in [A.y, A.z]]))
Q_map[Q1] = trigsimp(solve(F3 - Fr[-1].subs(Q_map), Q1)[0])
#F3 + F3* = 0
Q_map[Q1] = Q_map[Q1].subs(F3, -Fr_star[2])
print('Q1 = {0}'.format(msprint(Q_map[Q1])))
Q1_expected = e*M*g*cos(theta)/(f - u_prime*R*u2/sqrt(u2**2 + f**2*u1**2))
assert expand(radsimp(Q_map[Q1] - Q1_expected)) == 0
示例8: test_radsimp
def test_radsimp():
r2=sqrt(2)
r3=sqrt(3)
r5=sqrt(5)
r7=sqrt(7)
assert radsimp(1/r2) == \
sqrt(2)/2
assert radsimp(1/(1 + r2)) == \
-1 + sqrt(2)
assert radsimp(1/(r2 + r3)) == \
-sqrt(2) + sqrt(3)
assert fraction(radsimp(1/(1 + r2 + r3))) == \
(-sqrt(6) + sqrt(2) + 2, 4)
assert fraction(radsimp(1/(r2 + r3 + r5))) == \
(-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12)
assert fraction(radsimp(1/(1 + r2 + r3 + r5))) == \
(-34*sqrt(10) -
26*sqrt(15) -
55*sqrt(3) -
61*sqrt(2) +
14*sqrt(30) +
93 +
46*sqrt(6) +
53*sqrt(5), 71)
assert fraction(radsimp(1/(r2 + r3 + r5 + r7))) == \
(-50*sqrt(42) - 133*sqrt(5) - 34*sqrt(70) -
145*sqrt(3) + 22*sqrt(105) + 185*sqrt(2) +
62*sqrt(30) + 135*sqrt(7), 215)
z = radsimp(1/(1 + r2/3 + r3/5 + r5 + r7))
assert len((3616791619821680643598*z).args) == 16
assert radsimp(1/z) == 1/z
assert radsimp(1/z, max_terms=20).expand() == 1 + r2/3 + r3/5 + r5 + r7
assert radsimp(1/(r2*3)) == \
sqrt(2)/6
assert radsimp(1/(r2*a + r3 + r5 + r7)) == 1/(r2*a + r3 + r5 + r7)
assert radsimp(1/(r2*a + r2*b + r3 + r7)) == \
((sqrt(42)*(a + b) +
sqrt(3)*(-a**2 - 2*a*b - b**2 - 2) +
sqrt(7)*(-a**2 - 2*a*b - b**2 + 2) +
sqrt(2)*(a**3 + 3*a**2*b + 3*a*b**2 - 5*a + b**3 - 5*b))/
((a**4 + 4*a**3*b + 6*a**2*b**2 - 10*a**2 +
4*a*b**3 - 20*a*b + b**4 - 10*b**2 + 4)))/2
assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \
(sqrt(2)/(a + b + c + d))/2
assert radsimp(1/(1 + r2*a + r2*b + r2*c + r2*d)) == \
((sqrt(2)*(-a - b - c - d) + 1)/
(-2*a**2 - 4*a*b - 4*a*c - 4*a*d - 2*b**2 -
4*b*c - 4*b*d - 2*c**2 - 4*c*d - 2*d**2 + 1))
assert radsimp((y**2 - x)/(y - sqrt(x))) == \
sqrt(x) + y
assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \
-(sqrt(x) + y)
assert radsimp(1/(1 - I + a*I)) == \
(I*(-a + 1) + 1)/(a**2 - 2*a + 2)
assert radsimp(1/((-x + y)*(x - sqrt(y)))) == (x + sqrt(y))/((-x + y)*(x**2 - y))
e = (3 + 3*sqrt(2))*x*(3*x - 3*sqrt(y))
assert radsimp(e) == 9*x*(1 + sqrt(2))*(x - sqrt(y))
assert radsimp(1/e) == (-1 + sqrt(2))*(x + sqrt(y))/(9*x*(x**2 - y))
assert radsimp(1 + 1/(1 + sqrt(3))) == Mul(S(1)/2, 1 + sqrt(3), evaluate=False)
A = symbols("A", commutative=False)
assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == x**2 + sqrt(2)*(x**2 - x*A)
assert radsimp(1/sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3)
assert radsimp(1/sqrt(5 + 2 * sqrt(6))**3) == -11*sqrt(2) + 9*sqrt(3)
# coverage not provided by above tests
assert collect_const(2*sqrt(3) + 4*a*sqrt(5)) == Mul(2, (2*sqrt(5)*a + sqrt(3)), evaluate=False)
assert collect_const(2*sqrt(3) + 4*a*sqrt(5), sqrt(3)) == 2*(2*sqrt(5)*a + sqrt(3))
assert collect_const(sqrt(2)*(1 + sqrt(2)) + sqrt(3) + x*sqrt(2)) == \
sqrt(2)*(x + 1 + sqrt(2)) + sqrt(3)
示例9: test_C19
def test_C19():
assert radsimp(nsimplify((90 + 35*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
示例10: test_C16
def test_C16():
test = radsimp(nsimplify(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15))))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
示例11: test_C17
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
示例12: emit
def emit(name, func):
for x in sorted(exparg):
test(name, x, sp.ratsimp(sp.radsimp(func(x).rewrite(sp.exp))),
no_trigh=True)
示例13: print_header
# Bilinear transform equation
print_header("Bilinear transformation method")
print("\nLaplace and Z Transforms are related by:")
pprint(Eq(z, exp(s / rate)))
print("\nBilinear transform approximation (no prewarping):")
z_num = exp(s / (2 * rate))
z_den = exp(-s / (2 * rate))
assert z_num / z_den == exp(s / rate)
z_bilinear = together(taylor(z_num, x=s, x0=0) / taylor(z_den, x=s, x0=0))
pprint(Eq(z, z_bilinear))
print("\nWhich also means:")
s_bilinear = solve(Eq(z, z_bilinear), s)[0]
pprint(Eq(s, radsimp(s_bilinear.subs(z, 1 / zinv))))
print("\nPrewarping H(z) = H(s) at a frequency " + pretty(w) + " (rad/sample) to " + pretty(f) + " (rad/s):")
pprint(Eq(z, exp(I * w)))
pprint(Eq(s, I * f))
f_prewarped = (s_bilinear / I).subs(z, exp(I * w)).rewrite(sin).rewrite(tan).cancel()
pprint(Eq(f, f_prewarped))
# Lowpass/highpass filters with prewarped bilinear transform equation
T = tan(w / 2)
for name, afilt_str in [("high", "s / (s - p)"), ("low", "-p / (s - p)")]:
print()
print_header("Laplace {0}pass filter (matches {0}pass.z)".format(name))
print("\nFilter equations:")
print("H(s) = " + afilt_str)
示例14: Laguerre
def Laguerre(self, n=1, r=Symbol("r")):
return sympy.radsimp(sympy.exp(r) * sympy.diff(r ** n * sympy.exp(-r), r, n))
示例15: dot
vc = [dot(p.vel(R), basis) for p in [pS1, pS2] for basis in R]
# Since S is rolling against C, v_S^_C = 0.
pO.set_vel(C, 0)
pS_star.v2pt_theory(pO, C, A)
pS_hat.v2pt_theory(pS_star, C, S)
vc += [dot(pS_hat.vel(C), basis) for basis in A]
# Cone has only angular velocity ω in R.z direction.
vc += [dot(C.ang_vel_in(R), basis) for basis in [R.x, R.y]]
vc += [omega - dot(C.ang_vel_in(R), R.z)]
vc_map = solve(vc, u)
# cone rigidbody
I_C = inertia(A, I11, I22, J)
rbC = RigidBody('rbC', pO, C, M, (I_C, pO))
# sphere rigidbody
I_S = inertia(A, 2*m*r**2/5, 2*m*r**2/5, 2*m*r**2/5)
rbS = RigidBody('rbS', pS_star, S, m, (I_S, pS_star))
# kinetic energy
K = radsimp(expand((rbC.kinetic_energy(R) +
4*rbS.kinetic_energy(R)).subs(vc_map)))
print('K = {0}'.format(msprint(collect(K, omega**2/2))))
K_expected = (J + 18*m*r**2*(2 + sqrt(3))/5) * omega**2/2
#print('K_expected = {0}'.format(msprint(collect(expand(K_expected),
# omega**2/2))))
assert expand(K - K_expected) == 0