本文整理汇总了Python中sympy.posify函数的典型用法代码示例。如果您正苦于以下问题:Python posify函数的具体用法?Python posify怎么用?Python posify使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了posify函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_posify
def test_posify():
from sympy import posify, Symbol, log
from sympy.abc import x
assert str(posify(x + Symbol("p", positive=True) + Symbol("n", negative=True))) == "(_x + n + p, {_x: x})"
# log(1/x).expand() should be log(1/x) but it comes back as -log(x)
# when it is corrected, posify will allow the change to be made:
eq, rep = posify(1 / x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == "([_x, _x + 1], {_x: x})"
示例2: symbolic_equality
def symbolic_equality(test_expr, target_expr):
"""Test if two expressions are symbolically equivalent.
Use the sympy 'simplify' function to test if the difference between two
expressions is symbolically zero. This is known to be impossible in the general
case, but should work well enough for most cases likely to be used on Isaac.
A return value of 'False' thus does not necessarily mean the two expressions
are not equal (sympy assumes complex number variables; so some simlifications
may not occur).
Returns True if sympy can determine that the two expressions are equal,
and returns False if this cannot be determined OR if the two expressions
are definitely not equal.
- 'test_expr' should be the untrusted sympy expression to check.
- 'target_expr' should be the trusted sympy expression to match against.
"""
print "[SYMBOLIC TEST]"
# Here we make the assumption that all variables are real and positive to
# aid the simplification process. Since we do this for numeric checking anyway,
# it doesn't seem like much of an issue. Removing 'sympy.posify()' below will
# stop this.
try:
if sympy.simplify(sympy.posify(test_expr - target_expr)[0]) == 0:
print "Symbolic match."
print "INFO: Adding known pair (%s, %s)" % (target_expr, test_expr)
KNOWN_PAIRS[(target_expr, test_expr)] = "symbolic"
return True
else:
return False
except NotImplementedError, e:
print "%s: %s - Can't check symbolic equality!" % (type(e).__name__, e.message.capitalize())
return False
示例3: test_posify
def test_posify():
from sympy.abc import x
assert str(posify(
x +
Symbol('p', positive=True) +
Symbol('n', negative=True))) == '(_x + n + p, {_x: x})'
eq, rep = posify(1/x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})'
x = symbols('x')
p = symbols('p', positive=True)
n = symbols('n', negative=True)
orig = [x, n, p]
modified, reps = posify(orig)
assert str(modified) == '[_x, n, p]'
assert [w.subs(reps) for w in modified] == orig
assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \
'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))'
assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \
'Sum(_x**(-n), (n, 1, 3))'
# issue 16438
k = Symbol('k', finite=True)
eq, rep = posify(k)
assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False,
'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True,
'nonnegative': True, 'negative': False, 'complex': True, 'finite': True, 'infinite': False}
示例4: test_posify
def test_posify():
from sympy.abc import x
assert str(posify(
x +
Symbol('p', positive=True) +
Symbol('n', negative=True))) == '(_x + n + p, {_x: x})'
# log(1/x).expand() should be log(1/x) but it comes back as -log(x)
# when it is corrected, posify will allow the change to be made. The
# force=True option can do so as well when it is implemented.
eq, rep = posify(1/x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})'
x = symbols('x')
p = symbols('p', positive=True)
n = symbols('n', negative=True)
orig = [x, n, p]
modified, reps = posify(orig)
assert str(modified) == '[_x, n, p]'
assert [w.subs(reps) for w in modified] == orig
assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \
'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))'
assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \
'Sum(_x**(-n), (n, 1, 3))'
示例5: test_posify
def test_posify():
from sympy.abc import x
assert str(posify(x + Symbol("p", positive=True) + Symbol("n", negative=True))) == "(_x + n + p, {_x: x})"
eq, rep = posify(1 / x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == "([_x, _x + 1], {_x: x})"
x = symbols("x")
p = symbols("p", positive=True)
n = symbols("n", negative=True)
orig = [x, n, p]
modified, reps = posify(orig)
assert str(modified) == "[_x, n, p]"
assert [w.subs(reps) for w in modified] == orig
assert (
str(Integral(posify(1 / x + y)[0], (y, 1, 3)).expand()) == "Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))"
)
assert str(Sum(posify(1 / x ** n)[0], (n, 1, 3)).expand()) == "Sum(_x**(-n), (n, 1, 3))"
示例6: test_random
def test_random():
from sympy import posify
assert posify(x)[0]._random() is not None
示例7: test_posify
def test_posify():
assert posify(A)[0].is_commutative == False
for q in (A*B/A, (A*B/A)**2, (A*B)**2, A*B - B*A):
p = posify(q)
assert p[0].subs(p[1]) == q
示例8: test_random
def test_random():
from sympy import posify
assert posify(x)[0]._random() is not None
assert S('-pi*Abs(1/log(n!)) + 1')._random(2, -2, 0, -1, 0) is None
示例9: __new__
def __new__(cls, unit_expr=None, cgs_value=None, dimensions=None,
**assumptions):
"""
Build a new unit. May be an atomic unit (like a gram) or a combination
of other units (like g / cm**3). Either way, you can make the unit
symbol anything.
Parameters
----------
unit_expr : string or sympy.core.expr.Expr
The symbolic expression. Symbol("g") for gram.
cgs_value : float
This unit's value in cgs. 1.0 for gram.
dimensions : sympy.core.expr.Expr
A sympy expression representing the dimensionality of this unit.
Should just be a sympy.core.mul.Mul object of mass, length, time,
and temperature objects to various powers. mass for gram.
"""
# Check for no args
if not unit_expr:
unit_expr = sympify(1)
# if we have a string, parse into an expression
if isinstance(unit_expr, str):
unit_expr = parse_expr(unit_expr)
if not isinstance(unit_expr, Expr):
raise Exception("Unit representation must be a string or sympy Expr. %s is a %s" % (unit_expr, type(unit_expr)))
# done with argument checking...
# sympify, posify, and nsimplify the expr
unit_expr = sympify(unit_expr)
p, r = posify(unit_expr)
unit_expr = p.subs(r)
unit_expr = nsimplify(unit_expr)
# see if the unit is atomic.
is_atomic = False
if isinstance(unit_expr, Symbol):
is_atomic = True
# did they supply cgs_value and dimensions?
if cgs_value and not dimensions or dimensions and not cgs_value:
raise Exception("If you provide cgs_vale or dimensions, you must provide both! cgs_value is %s, dimensions is %s." % (cgs_value, dimensions))
if cgs_value and dimensions:
# check that cgs_vale is a float or can be converted to one
try:
cgs_value = float(cgs_value)
except ValueError:
raise ValueError("Please provide a float for the cgs_value kwarg. I got a '%s'." % cgs_value)
# check that dimensions is valid
dimensions = verify_dimensions(sympify(dimensions))
# save the values
this_cgs_value, this_dimensions = cgs_value, dimensions
else: # lookup the unit symbols
this_cgs_value, this_dimensions = \
get_unit_data_from_expr(unit_expr)
# cool trick to get dimensions powers as Rationals
this_dimensions = nsimplify(this_dimensions)
# init obj with superclass construct
obj = Expr.__new__(cls, **assumptions)
# attach attributes to obj
obj.expr = unit_expr
obj.is_atomic = is_atomic
obj.cgs_value = this_cgs_value
obj.dimensions = this_dimensions
# return `obj` so __init__ can handle it.
return obj
示例10: test_random
def test_random():
from sympy import posify, lucas
assert posify(x)[0]._random() is not None
assert lucas(n)._random(2, -2, 0, -1, 1) is None