当前位置: 首页>>代码示例>>Python>>正文


Python sympy.nextprime函数代码示例

本文整理汇总了Python中sympy.nextprime函数的典型用法代码示例。如果您正苦于以下问题:Python nextprime函数的具体用法?Python nextprime怎么用?Python nextprime使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了nextprime函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: hamming_n_count

def hamming_n_count(limit, n):
    exclusions = 0

    prime = nextprime(n)
    while prime <= limit:
        print prime, limit // prime
        exclusions += limit // prime
        prime = nextprime(prime)

    print limit, exclusions
    return limit - exclusions
开发者ID:iynaix,项目名称:eulerproject,代码行数:11,代码来源:euler204.py

示例2: euler134

def euler134():
    ret = 0
    p1, p2 = 3, 5
    while p2 < 1000000:
        p1, p2 = p2, nextprime(p2)
        ret += S(p1, p2)
    return ret
开发者ID:iynaix,项目名称:eulerproject,代码行数:7,代码来源:euler134.py

示例3: test_dmp_zz_wang

def test_dmp_zz_wang():
    R, x,y,z = ring("x,y,z", ZZ)
    UV, _x = ring("x", ZZ)

    p = ZZ(nextprime(R.dmp_zz_mignotte_bound(w_1)))
    assert p == 6291469

    t_1, k_1, e_1 = y, 1, ZZ(-14)
    t_2, k_2, e_2 = z, 2, ZZ(3)
    t_3, k_3, e_3 = y + z, 2, ZZ(-11)
    t_4, k_4, e_4 = y - z, 1, ZZ(-17)

    T = [t_1, t_2, t_3, t_4]
    K = [k_1, k_2, k_3, k_4]
    E = [e_1, e_2, e_3, e_4]

    T = zip([ t.drop(x) for t in T ], K)

    A = [ZZ(-14), ZZ(3)]

    S = R.dmp_eval_tail(w_1, A)
    cs, s = UV.dup_primitive(S)

    assert cs == 1 and s == S == \
        1036728*_x**6 + 915552*_x**5 + 55748*_x**4 + 105621*_x**3 - 17304*_x**2 - 26841*_x - 644

    assert R.dmp_zz_wang_non_divisors(E, cs, ZZ(4)) == [7, 3, 11, 17]
    assert UV.dup_sqf_p(s) and UV.dup_degree(s) == R.dmp_degree(w_1)

    _, H = UV.dup_zz_factor_sqf(s)

    h_1 = 44*_x**2 + 42*_x + 1
    h_2 = 126*_x**2 - 9*_x + 28
    h_3 = 187*_x**2 - 23

    assert H == [h_1, h_2, h_3]

    LC = [ lc.drop(x) for lc in [-4*y - 4*z, -y*z**2, y**2 - z**2] ]

    assert R.dmp_zz_wang_lead_coeffs(w_1, T, cs, E, H, A) == (w_1, H, LC)

    H_1 = [44*x**2 + 42*x + 1, 126*x**2 - 9*x + 28, 187*x**2 - 23]
    H_2 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]
    H_3 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]

    c_1 = -70686*x**5 - 5863*x**4 - 17826*x**3 + 2009*x**2 + 5031*x + 74
    c_2 = 9*x**5*y**4 + 12*x**5*y**3 - 45*x**5*y**2 - 108*x**5*y - 324*x**5 + 18*x**4*y**3 - 216*x**4*y**2 - 810*x**4*y + 2*x**3*y**4 + 9*x**3*y**3 - 252*x**3*y**2 - 288*x**3*y - 945*x**3 - 30*x**2*y**2 - 414*x**2*y + 2*x*y**3 - 54*x*y**2 - 3*x*y + 81*x + 12*y
    c_3 = -36*x**4*y**2 - 108*x**4*y - 27*x**3*y**2 - 36*x**3*y - 108*x**3 - 8*x**2*y**2 - 42*x**2*y - 6*x*y**2 + 9*x + 2*y

    # TODO
    #assert R.dmp_zz_diophantine(H_1, c_1, [], 5, p) == [-3*x, -2, 1]
    #assert R.dmp_zz_diophantine(H_2, c_2, [ZZ(-14)], 5, p) == [-x*y, -3*x, -6]
    #assert R.dmp_zz_diophantine(H_3, c_3, [ZZ(-14)], 5, p) == [0, 0, -1]

    factors = R.dmp_zz_wang_hensel_lifting(w_1, H, LC, A, p)
    assert R.dmp_expand(factors) == w_1
开发者ID:B-Rich,项目名称:sympy,代码行数:56,代码来源:test_factortools.py

示例4: doProblem

def doProblem():
	count = 0
	sum = 0
	i=10
	while count < 11:
		i = nextprime(i)
		if TruncatableTest(i):
#			print(i)
			sum += i
			count += 1
	return sum
开发者ID:azusa0127,项目名称:ProjectEuler,代码行数:11,代码来源:p37.py

示例5: oeis_a037992

def oeis_a037992(maxsize):
    cnt = 0
    todo = PriorityQueueSet([(2,2,0)])
    done = set([2])
    while maxsize != cnt:
        out, p, k = todo.pop_smallest()
        yield out
        cnt += 1
        np = sympy.nextprime(p)
        if np not in done:
            todo.add((np,np,0))
            done.add(np)
        todo.add((p**(2**(k+1)), p, k+1))
开发者ID:AndrewWalker,项目名称:project-euler,代码行数:13,代码来源:prob500.py

示例6: dh_private_key

def dh_private_key(digit = 10):
    """
    Return two number tuple as private key.

    Diffie-Hellman key exchange is based on the mathematical problem
    called the Discrete Logarithm Problem (see ElGamal).

    Diffie-Hellman key exchange is divided into the following steps:

    *   Alice and Bob agree on a base that consist of a prime p and a
        primitive root of p called g
    *   Alice choses a number a and Bob choses a number b where a
        and b are random numbers with 1 < a, b < p. These are their
        private keys.
    *   Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends
        Alice `g^{b} \pmod p`
    *   They both raise the received value to their secretly chose number
        (a or b) and now have both as their shared key `g^{ab} \pmod p`

    Parameters
    ==========

    digit: Key length in binary

    Returns
    =======

    (p, g, a) : p = prime number, g = primitive root of p,
                a = random number in between 2 and p - 1

    Examples
    ========

    >>> from sympy.crypto.crypto import dh_private_key
    >>> from sympy.ntheory import isprime, is_primitive_root
    >>> p, g, _ = dh_private_key()
    >>> isprime(p)
    True
    >>> is_primitive_root(g, p)
    True
    >>> p, g, _ = dh_private_key(5)
    >>> isprime(p)
    True
    >>> is_primitive_root(g, p)
    True

    """
    p = nextprime(2 ** digit)
    g = primitive_root(p)
    a = randrange(2, p)
    return p, g, a
开发者ID:Upabjojr,项目名称:sympy,代码行数:51,代码来源:crypto.py

示例7: p134

def p134(limit):
    
    t=time.clock()   
    ps=list(primesieve(limit)[2:])
    ps.append(sp.nextprime(limit))
    S=0
    for i in range(len(ps)-1) :                
        b=ps[i+1]
        c=ps[i]
        a=-10**(int(math.log10(c))+1)
        x1,y1=primeLD(a,b,c)
        x=x1%b   #b is prime, and a is a multiple of 100, so gcd(a,b)=1
        S+=-a*x+c                  
    print(S,time.clock()-t)
开发者ID:mbh038,项目名称:PE,代码行数:14,代码来源:PE_0134.py

示例8: truncatables_primes

def truncatables_primes():
    count =0
    s = 0
    last_prime = 7
    while count<11:
        prime = nextprime(last_prime)
        prime_str = str(prime)
        is_cool = True
        for i in range(1,len(prime_str)):
            p1 = int(prime_str[i:])
            p2 = int(prime_str[:-i])
            if not (isprime(p1) and isprime(p2)):
                is_cool = False
        if is_cool:
            count = count +1
            s = s+prime
        last_prime = prime
    return s
开发者ID:david-gang,项目名称:project_euler,代码行数:18,代码来源:ex37.py

示例9: primes_gen

def primes_gen(*args):
    """
    Prime number generator

    Possible usages:
        primes_gen(): infinite generator
        primes_gen(a): generate all primes below a
        primes_gen(a, b): generate all primes below a and b
    """
    if len(args) == 1:
        for x in primerange(2, args[0]):
            yield x
    elif len(args) == 2:
        for x in primerange(*args):
            yield x
    elif len(args) == 0:
        x = 1
        while 1:
            x = nextprime(x)
            yield x
开发者ID:iynaix,项目名称:eulerproject,代码行数:20,代码来源:utils.py

示例10: test_gf_ddf

def test_gf_ddf():
    f = gf_from_dict({15: 1, 0: -1}, 11, ZZ)
    g = [([1, 0, 0, 0, 0, 10], 1),
         ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)]

    assert gf_ddf_zassenhaus(f, 11, ZZ) == g
    assert gf_ddf_shoup(f, 11, ZZ) == g

    f = gf_from_dict({63: 1, 0: 1}, 2, ZZ)
    g = [([1, 1], 1),
         ([1, 1, 1], 2),
         ([1, 1, 1, 1, 1, 1, 1], 3),
         ([1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], 6)]

    assert gf_ddf_zassenhaus(f, 2, ZZ) == g
    assert gf_ddf_shoup(f, 2, ZZ) == g

    f = gf_from_dict({6: 1, 5: -1, 4: 1, 3: 1, 1: -1}, 3, ZZ)
    g = [([1, 1, 0], 1),
         ([1, 1, 0, 1, 2], 2)]

    assert gf_ddf_zassenhaus(f, 3, ZZ) == g
    assert gf_ddf_shoup(f, 3, ZZ) == g

    f = [1, 2, 5, 26, 677, 436, 791, 325, 456, 24, 577]
    g = [([1, 701], 1),
         ([1, 110, 559, 532, 694, 151, 110, 70, 735, 122], 9)]

    assert gf_ddf_zassenhaus(f, 809, ZZ) == g
    assert gf_ddf_shoup(f, 809, ZZ) == g

    p = ZZ(nextprime(int((2**15 * pi).evalf())))
    f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ)
    g = [([1, 22730, 68144], 2),
         ([1, 64876, 83977, 10787, 12561, 68608, 52650, 88001, 84356], 4),
         ([1, 15347, 95022, 84569, 94508, 92335], 5)]

    assert gf_ddf_zassenhaus(f, p, ZZ) == g
    assert gf_ddf_shoup(f, p, ZZ) == g
开发者ID:BDGLunde,项目名称:sympy,代码行数:41,代码来源:test_galoistools.py

示例11: elgamal_private_key

def elgamal_private_key(digit=10):
    """
    Return three number tuple as private key.

    Elgamal encryption is based on the mathmatical problem
    called the Discrete Logarithm Problem (DLP). For example,

    `a^{b} \equiv c \pmod p`

    In general, if a and b are known, c is easily
    calculated. If b is unknown, it is hard to use
    a and c to get b.

    Parameters
    ==========

    digit : Key length in binary

    Returns
    =======

    (p, r, d) : p = prime number, r = primitive root, d = random number


    Examples
    ========

    >>> from sympy.crypto.crypto import elgamal_private_key
    >>> from sympy.ntheory import is_primitive_root, isprime
    >>> a, b, _ = elgamal_private_key()
    >>> isprime(a)
    True
    >>> is_primitive_root(b, a)
    True

    """
    p = nextprime(2**digit)
    return p, primitive_root(p), randrange(2, p)
开发者ID:Upabjojr,项目名称:sympy,代码行数:38,代码来源:crypto.py

示例12: test_dmp_zz_wang

def test_dmp_zz_wang():
    p = ZZ(nextprime(dmp_zz_mignotte_bound(w_1, 2, ZZ)))

    assert p == ZZ(6291469)

    t_1, k_1, e_1 = dmp_normal([[1],[]], 1, ZZ), 1, ZZ(-14)
    t_2, k_2, e_2 = dmp_normal([[1, 0]], 1, ZZ), 2, ZZ(3)
    t_3, k_3, e_3 = dmp_normal([[1],[ 1, 0]], 1, ZZ), 2, ZZ(-11)
    t_4, k_4, e_4 = dmp_normal([[1],[-1, 0]], 1, ZZ), 1, ZZ(-17)

    T = [t_1, t_2, t_3, t_4]
    K = [k_1, k_2, k_3, k_4]
    E = [e_1, e_2, e_3, e_4]

    T = zip(T, K)

    A = [ZZ(-14), ZZ(3)]

    S = dmp_eval_tail(w_1, A, 2, ZZ)
    cs, s = dup_primitive(S, ZZ)

    assert cs == 1 and s == S == \
        dup_normal([1036728, 915552, 55748, 105621, -17304, -26841, -644], ZZ)

    assert dmp_zz_wang_non_divisors(E, cs, 4, ZZ) == [7, 3, 11, 17]
    assert dup_sqf_p(s, ZZ) and dup_degree(s) == dmp_degree(w_1, 2)

    _, H = dup_zz_factor_sqf(s, ZZ)

    h_1 = dup_normal([44,  42,   1], ZZ)
    h_2 = dup_normal([126, -9,  28], ZZ)
    h_3 = dup_normal([187,  0, -23], ZZ)

    assert H == [h_1, h_2, h_3]

    lc_1 = dmp_normal([[-4], [-4,0]], 1, ZZ)
    lc_2 = dmp_normal([[-1,0,0], []], 1, ZZ)
    lc_3 = dmp_normal([[1], [], [-1,0,0]], 1, ZZ)

    LC = [lc_1, lc_2, lc_3]

    assert dmp_zz_wang_lead_coeffs(w_1, T, cs, E, H, A, 2, ZZ) == (w_1, H, LC)

    H_1 = [ dmp_normal(t, 0, ZZ) for t in [[44L,42L,1L],[126L,-9L,28L],[187L,0L,-23L]] ]
    H_2 = [ dmp_normal(t, 1, ZZ) for t in [[[-4,-12],[-3,0],[1]],[[-9,0],[-9],[-2,0]],[[1,0,-9],[],[1,-9]]] ]
    H_3 = [ dmp_normal(t, 1, ZZ) for t in [[[-4,-12],[-3,0],[1]],[[-9,0],[-9],[-2,0]],[[1,0,-9],[],[1,-9]]] ]

    c_1 = dmp_normal([-70686,-5863,-17826,2009,5031,74], 0, ZZ)
    c_2 = dmp_normal([[9,12,-45,-108,-324],[18,-216,-810,0],[2,9,-252,-288,-945],[-30,-414,0],[2,-54,-3,81],[12,0]], 1, ZZ)
    c_3 = dmp_normal([[-36,-108,0],[-27,-36,-108],[-8,-42,0],[-6,0,9],[2,0]], 1, ZZ)

    T_1 = [ dmp_normal(t, 0, ZZ) for t in [[-3,0],[-2],[1]] ]
    T_2 = [ dmp_normal(t, 1, ZZ) for t in [[[-1,0],[]],[[-3],[]],[[-6]]] ]
    T_3 = [ dmp_normal(t, 1, ZZ) for t in [[[]],[[]],[[-1]]] ]

    assert dmp_zz_diophantine(H_1, c_1,        [], 5, p, 0, ZZ) == T_1
    assert dmp_zz_diophantine(H_2, c_2, [ZZ(-14)], 5, p, 1, ZZ) == T_2
    assert dmp_zz_diophantine(H_3, c_3, [ZZ(-14)], 5, p, 1, ZZ) == T_3

    factors = dmp_zz_wang_hensel_lifting(w_1, H, LC, A, p, 2, ZZ)

    assert dmp_expand(factors, 2, ZZ) == w_1
开发者ID:ENuge,项目名称:sympy,代码行数:62,代码来源:test_factortools.py

示例13: test_powers_Integer

def test_powers_Integer():
    """Test Integer._eval_power"""
    # check infinity
    assert S(1) ** S.Infinity == 1
    assert S(-1)** S.Infinity == S.NaN
    assert S(2) ** S.Infinity == S.Infinity
    assert S(-2)** S.Infinity == S.Infinity + S.Infinity * S.ImaginaryUnit
    assert S(0) ** S.Infinity == 0

    # check Nan
    assert S(1)  ** S.NaN == S.NaN
    assert S(-1) ** S.NaN == S.NaN

    # check for exact roots
    assert S(-1)  ** Rational(6, 5) == - (-1)**(S(1)/5)
    assert S(4)   ** Rational(1, 2) == 2
    assert S(-4)  ** Rational(1, 2) == I * 2
    assert S(16)  ** Rational(1, 4) == 2
    assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1,4)
    assert S(9)   ** Rational(3, 2) == 27
    assert S(-9)  ** Rational(3, 2) == -27*I
    assert S(27)  ** Rational(2, 3) == 9
    assert S(-27) ** Rational(2, 3) == 9 * (S(-1) ** Rational(2, 3))
    assert (-2) ** Rational(-2, 1) == Rational(1, 4)

    # not exact roots
    assert (-3) ** (S(1)/2)  == sqrt(-3)
    assert (3)  ** (S(3)/2)  == 3 * sqrt(3)
    assert (-3) ** (S(3)/2)  == - 3 * sqrt(-3)
    assert (-3) ** (S(5)/2)  ==  9 * I * sqrt(3)
    assert (-3) ** (S(7)/2)  == - I * 27 * sqrt(3)
    assert (2)  ** (S(3)/2)  == 2 * sqrt(2)
    assert (2)  ** (S(-3)/2) == sqrt(2) / 4
    assert (81) ** (S(2)/3)  == 9 * (S(3) ** (S(2)/3))
    assert (-81) ** (S(2)/3)  == 9 * (S(-3) ** (S(2)/3))
    assert (-3) ** Rational(-7, 3) == -(-1)**Rational(2, 3)*3**Rational(2, 3)/27
    assert (-3) ** Rational(-2, 3) == -(-1)**Rational(1, 3)*3**Rational(1, 3)/3

    # join roots
    assert sqrt(6) + sqrt(24) == 3*sqrt(6)
    assert sqrt(2) * sqrt(3)  == sqrt(6)

    # separate sybols & constansts
    x = Symbol("x")
    assert sqrt(49 * x) == 7 * sqrt(x)
    assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi)

    # check that it is fast for big numbers
    assert (2**64+1) ** Rational(4, 3)
    assert (2**64+1) ** Rational(17,25)

    # negative rational power and negative base
    assert (-3) ** Rational(-7, 3) == -(-1)**Rational(2, 3)*3**Rational(2, 3)/27
    assert (-3) ** Rational(-2, 3) == -(-1)**Rational(1, 3)*3**Rational(1, 3)/3

    assert S(1234).factors() == {617: 1, 2: 1}
    assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1}
    # test that eval_power factors numbers bigger than limit (2**15)
    from sympy import nextprime
    n = nextprime(2**15) # bigger than the current limit in factor_trial_division
    assert sqrt(n**2) == n
    assert sqrt(n**3) == n*sqrt(n)
    assert sqrt(4*n) == 2*sqrt(n)
开发者ID:robotment,项目名称:sympy,代码行数:63,代码来源:test_numbers.py

示例14: random_prime

def random_prime(bits):
    return sympy.nextprime(2 ** bits + random.randint(0, 2 ** bits))
开发者ID:dkohlbre,项目名称:crypto-vm,代码行数:2,代码来源:server.py

示例15: test_gf_factor

def test_gf_factor():
    assert gf_factor([], 11) == (0, [])
    assert gf_factor([1], 11) == (1, [])
    assert gf_factor([1,1], 11) == (1, [([1, 1], 1)])

    f, p = [1,0,0,1,0], 2

    g = (1, [([1, 0], 1),
             ([1, 1], 1),
             ([1, 1, 1], 1)])

    assert gf_factor(f, p, method='zassenhaus') == g
    assert gf_factor(f, p, method='shoup') == g

    g = (1, [[1, 0],
             [1, 1],
             [1, 1, 1]])

    assert gf_factor_sqf(f, p, method='zassenhaus') == g
    assert gf_factor_sqf(f, p, method='shoup') == g

    assert gf_factor([1, 5, 8, 4], 11) == \
        (1, [([1, 1], 1), ([1, 2], 2)])

    assert gf_factor([1, 1, 10, 1, 0, 10, 10, 10, 0, 0], 11) == \
        (1, [([1, 0], 2), ([1, 9, 5], 1), ([1, 3, 0, 8, 5, 2], 1)])

    assert gf_factor(gf_from_dict({32: 1, 0: 1}, 11), 11) == \
        (1, [([1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10], 1),
             ([1, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10], 1)])

    assert gf_factor(gf_from_dict({32: 8, 0: 5}, 11), 11) == \
        (8, [([1, 3], 1),
             ([1, 8], 1),
             ([1, 0, 9], 1),
             ([1, 2, 2], 1),
             ([1, 9, 2], 1),
             ([1, 0, 5, 0, 7], 1),
             ([1, 0, 6, 0, 7], 1),
             ([1, 0, 0, 0, 1, 0, 0, 0, 6], 1),
             ([1, 0, 0, 0, 10, 0, 0, 0, 6], 1)])

    assert gf_factor(gf_from_dict({63: 8, 0: 5}, 11), 11) == \
        (8, [([1, 7], 1),
             ([1, 4, 5], 1),
             ([1, 6, 8, 2], 1),
             ([1, 9, 9, 2], 1),
             ([1, 0, 0, 9, 0, 0, 4], 1),
             ([1, 2, 0, 8, 4, 6, 4], 1),
             ([1, 2, 3, 8, 0, 6, 4], 1),
             ([1, 2, 6, 0, 8, 4, 4], 1),
             ([1, 3, 3, 1, 6, 8, 4], 1),
             ([1, 5, 6, 0, 8, 6, 4], 1),
             ([1, 6, 2, 7, 9, 8, 4], 1),
             ([1, 10, 4, 7, 10, 7, 4], 1),
             ([1, 10, 10, 1, 4, 9, 4], 1)])

    # Gathen polynomials: x**n + x + 1 (mod p > 2**n * pi)

    p = nextprime(int((2**15 * pi).evalf()))
    f = gf_from_dict({15: 1, 1: 1, 0: 1}, p)

    assert gf_sqf_p(f, p) == True

    g = (1, [([1, 22730, 68144], 1),
             ([1, 81553, 77449, 86810, 4724], 1),
             ([1, 86276, 56779, 14859, 31575], 1),
             ([1, 15347, 95022, 84569, 94508, 92335], 1)])

    assert gf_factor(f, p, method='zassenhaus') == g
    assert gf_factor(f, p, method='shoup') == g

    g = (1, [[1, 22730, 68144],
             [1, 81553, 77449, 86810, 4724],
             [1, 86276, 56779, 14859, 31575],
             [1, 15347, 95022, 84569, 94508, 92335]])

    assert gf_factor_sqf(f, p, method='zassenhaus') == g
    assert gf_factor_sqf(f, p, method='shoup') == g

    # Shoup polynomials: f = a_0 x**n + a_1 x**(n-1) + ... + a_n
    # (mod p > 2**(n-2) * pi), where a_n = a_{n-1}**2 + 1, a_0 = 1

    p = nextprime(int((2**4 * pi).evalf()))
    f = [1, 2, 5, 26, 41, 39, 38]  # deg(f) = 6

    assert gf_sqf_p(f, p) == True

    g = (1, [([1, 44, 26], 1),
             ([1, 11, 25, 18, 30], 1)])

    assert gf_factor(f, p, method='zassenhaus') == g
    assert gf_factor(f, p, method='shoup') == g

    g = (1, [[1, 44, 26],
             [1, 11, 25, 18, 30]])

    assert gf_factor_sqf(f, p, method='zassenhaus') == g
    assert gf_factor_sqf(f, p, method='shoup') == g
开发者ID:KevinGoodsell,项目名称:sympy,代码行数:99,代码来源:test_galoispolys.py


注:本文中的sympy.nextprime函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。