本文整理汇总了Python中sympy.isprime函数的典型用法代码示例。如果您正苦于以下问题:Python isprime函数的具体用法?Python isprime怎么用?Python isprime使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了isprime函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
summa = 0
for num in range(1,150000001):
arr_num = []
arr_const = [1,3,7,9,13,27]
#List to hold all possible values
for i in arr_const:
var = ((num**2)+i)
if(sp.isprime(var)):
arr_num.append(var)
count = len(arr_num)
#Number of primes between two numbers
count_prime = 0
for k in range((num**2)+1,(num**2)+27+1):
if(sp.isprime(k)):
count_prime += 1
if(count == 6):
if(count == count_prime):
print num
summa += num
print "Total : " + str(summa)
示例2: euler58
def euler58():
cnt = 1
prime_cnt = 0
n = 2
while True:
prime_cnt += isprime(4 * n * n - 10 * n + 7)
prime_cnt += isprime(4 * n * n - 8 * n + 5)
prime_cnt += isprime(4 * n * n - 6 * n + 3)
cnt += 4
if prime_cnt * 1.0 / cnt < 0.1:
return n * 2 + 1
n += 1
示例3: keycreation
def keycreation(p, q, e):
n = p * q
# check p, q are primes
if not(isprime(p) and isprime(q)):
raise Exception('p, q are not primes')
# check gcd(e, (p-1)(q-1))=1
if (gcd(e, (p-1) * (q-1)) == 1):
return (n, e)
else:
raise Exception('Improper e')
示例4: check_trucations
def check_trucations(n):
number_digits = digits(n)
for x in range(1, len(number_digits)):
truncation1 = number_digits[x:]
truncation2 = number_digits[:len(number_digits) - x]
number1 = digits_to_int(truncation1)
number2 = digits_to_int(truncation2)
if (not sympy.isprime(number1)) or (not sympy.isprime(number2)):
return False
return True
示例5: golbach_other
def golbach_other():
i = 7
while True:
i = i+2
if isprime(i):
continue
max_j = int(math.sqrt(i/2))
g = False
for j in range(1,max_j+1):
if isprime(i - 2*j*j):
g = True
break
if not g:
return i
示例6: odd_composite_gen
def odd_composite_gen():
"""infinite generator of composite numbers"""
x = 3
while 1:
x += 2
if not isprime(x):
yield x
示例7: main
def main():
summa = 0
for i in range(1,2000001):
if(sp.isprime(i)):
summa += i
print summa
示例8: verifie_paire_debug
def verifie_paire_debug(A, B):
"""Version plus lente qui fait tous les tests, et affiche vrai ou faux pour chaque somme a + b."""
if A is None or B is None:
return False
reponse = True
for a in A:
if not isprime(a):
print(" - a = {:<6} est pas premier, ECHEC ...".format(a))
reponse = False
for b in B:
if not isprime(a + b):
print(" - a = {:<6} + b = {:<6} donnent {:<6} qui n'est pas premier, ECHEC ...".format(a, b, a + b))
reponse = False
else:
print(" - a = {:<6} + b = {:<6} donnent {:<6} qui est bien premier, OK ...".format(a, b, a + b))
return reponse
示例9: quadResidue
def quadResidue(p):
#Check whether p is prime and odd
if(not sp.isprime(p)):
return "~"
if(p%2==0):
return "~"
#This are the variables storing outputs
quadR=[]
quadNR=[]
#Making array S with numeral count 1 to (p-1)/2
S=[]
#This iss the loop process for making S when a=1
for j in range(1,int((p-1)/2)+1):
S.append(j)
#This operation is required for
#numpy based functionalities
S=np.array(S)
#Iterating for each a less than p, greater than 1
for a in range(1,p):
SNew=S*a #Makes life easy, as we can make S with any a
SNew%=p #Left reminders
n=0 #Count of remainders greater than p/2
#For the count of n, so to get the power
for i in range(len(SNew)):
if(SNew[i]>(p/2)):
n+=1
#Lengndre symbol operation
if((-1)**n==1):
quadR.append(a)
else:
quadNR.append(a)
return[quadR,quadNR]
示例10: solve
def solve():
for i in range(len(digits)):
for p in permutations(digits[i:]):
x = int(''.join(p))
if isprime(x):
return x
return -1
示例11: prove_factorial_divides_by_n_primes
def prove_factorial_divides_by_n_primes(n):
''' Always returns True because a factorial
is divisible by the all primes below n
by definition'''
return all(imap(lambda x, y: x % y == 0,
repeat(factorial(n)),
[y for y in range(1, n) if isprime(y)]))
示例12: calc_some
def calc_some(p):
if p <= 5:
raise ValueError("p must be larger than 5")
if not sympy.isprime(p):
raise ValueError("specify prime. actual p = {}, ntheory.divisors = {}".format(p, ntheory.divisors(p)))
r = reciprocal(p)
seq = calc_recurrence_seq(p)
d = len(seq)
former = r[:d // 2]
latter = r[d // 2:d]
if d % 2 == 0:
print('length of recurrence is even')
print('1/{} = '.format(p), r)
print('former = ', former)
print('latter = ', latter)
print('former + latter =\n', Decimal(former) + Decimal(latter))
else:
print('length of recurrence is not even. In fact')
print('1/{}'.format(p), r)
print('seq = ', seq)
print('len(seq) = ', len(seq))
print('But you may find something')
if latter[0] == 9:
print("you're lucky")
print('former = ', former)
print('latter = ', latter)
print('former + latter =\n', Decimal(former) + Decimal(latter))
示例13: replaced_is_prime
def replaced_is_prime(n, replace):
n = str(n)
res = 0
for i in range(replace, 10):
if isprime(int(n.replace(str(replace), str(i)))):
res += 1
return res
示例14: main
def main():
count = 0
for i in range(0,1000000):
if(sp.isprime(i)):
count += 1
if(count == 10001):
print i
break
示例15: isQuadraticResidue
def isQuadraticResidue(p, a):
if isprime(p):
if a ** ((p - 1) / 2) % p == 1:
return True
else:
return False
else:
return "N not a prime"