本文整理汇总了Python中sympy.fresnels函数的典型用法代码示例。如果您正苦于以下问题:Python fresnels函数的具体用法?Python fresnels怎么用?Python fresnels使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了fresnels函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_issue_10102
def test_issue_10102():
assert limit(fresnels(x), x, oo) == S.Half
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half
assert limit(5*fresnels(x), x, oo) == 5*S.Half
assert limit(fresnelc(x), x, oo) == S.Half
assert limit(fresnels(x), x, -oo) == -S.Half
assert limit(4*fresnelc(x), x, -oo) == -2
示例2: test_erf
def test_erf():
assert erf(nan) == nan
assert erf(oo) == 1
assert erf(-oo) == -1
assert erf(0) == 0
assert erf(I*oo) == oo*I
assert erf(-I*oo) == -oo*I
assert erf(-2) == -erf(2)
assert erf(-x*y) == -erf(x*y)
assert erf(-x - y) == -erf(x + y)
assert erf(erfinv(x)) == x
assert erf(erfcinv(x)) == 1 - x
assert erf(erf2inv(0, x)) == x
assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x
assert erf(I).is_real is False
assert erf(0).is_real is True
assert conjugate(erf(z)) == erf(conjugate(z))
assert erf(x).as_leading_term(x) == 2*x/sqrt(pi)
assert erf(1/x).as_leading_term(x) == erf(1/x)
assert erf(z).rewrite('uppergamma') == sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
assert erf(z).rewrite('erfc') == S.One - erfc(z)
assert erf(z).rewrite('erfi') == -I*erfi(I*z)
assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erf(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
assert erf(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [-S.Half], z**2)/sqrt(pi)
assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi)
assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
2/sqrt(pi)
assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi)
assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1
assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1
assert erf(x).as_real_imag() == \
((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
示例3: test_manualintegrate_special
def test_manualintegrate_special():
f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = x**(S(1)/3)*exp(-x/8), -16*uppergamma(S(4)/3, x/8)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(2*x)/x, Ei(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f = sin(x**2 + 4*x + 1)
F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cosh(x/2)/x, Chi(x/2)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = cos(x**2)/x, Ci(x**2)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 1/log(2*x + 1), li(2*x + 1)/2
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, S(2)/3)/3
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, -S(9)/4)
assert manualintegrate(f, x) == F and F.diff(x).equals(f)
示例4: test_erfi
def test_erfi():
assert erfi(nan) == nan
assert erfi(oo) == S.Infinity
assert erfi(-oo) == S.NegativeInfinity
assert erfi(0) == S.Zero
assert erfi(I*oo) == I
assert erfi(-I*oo) == -I
assert erfi(-x) == -erfi(x)
assert erfi(I*erfinv(x)) == I*x
assert erfi(I*erfcinv(x)) == I*(1 - x)
assert erfi(I*erf2inv(0, x)) == I*x
assert erfi(I).is_real is False
assert erfi(0).is_real is True
assert conjugate(erfi(z)) == erfi(conjugate(z))
assert erfi(z).rewrite('erf') == -I*erf(I*z)
assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I
assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
I*fresnels(z*(1 + I)/sqrt(pi)))
assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
I*fresnels(z*(1 + I)/sqrt(pi)))
assert erfi(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], z**2)/sqrt(pi)
assert erfi(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [-S.Half], -z**2)/sqrt(pi)
assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(S.Half,
-z**2)/sqrt(S.Pi) - S.One))
assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi)
assert expand_func(erfi(I*z)) == I*erf(z)
assert erfi(x).as_real_imag() == \
((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
示例5: test_erfc
def test_erfc():
assert erfc(nan) == nan
assert erfc(oo) == 0
assert erfc(-oo) == 2
assert erfc(0) == 1
assert erfc(I*oo) == -oo*I
assert erfc(-I*oo) == oo*I
assert erfc(-x) == S(2) - erfc(x)
assert erfc(erfcinv(x)) == x
assert erfc(I).is_real is False
assert erfc(0).is_real is True
assert conjugate(erfc(z)) == erfc(conjugate(z))
assert erfc(x).as_leading_term(x) == S.One
assert erfc(1/x).as_leading_term(x) == erfc(1/x)
assert erfc(z).rewrite('erf') == 1 - erf(z)
assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z)
assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([S.Half], [], [0], [-S.Half], z**2)/sqrt(pi)
assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
assert erfc(z).rewrite('expint') == S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi)
assert expand_func(erf(x) + erfc(x)) == S.One
assert erfc(x).as_real_imag() == \
((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))
示例6: test_fresnel
def test_fresnel():
assert fresnels(0) == 0
assert fresnels(oo) == S.Half
assert fresnels(-oo) == -S.Half
assert fresnels(z) == fresnels(z)
assert fresnels(-z) == -fresnels(z)
assert fresnels(I*z) == -I*fresnels(z)
assert fresnels(-I*z) == I*fresnels(z)
assert conjugate(fresnels(z)) == fresnels(conjugate(z))
assert fresnels(z).diff(z) == sin(pi*z**2/2)
assert fresnels(z).rewrite(erf) == (S.One + I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnels(z).rewrite(hyper) == \
pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16)
assert fresnels(z).series(z, n=15) == \
pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)
assert fresnels(w).is_real is True
assert fresnels(z).as_real_imag() == \
((fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
I*(fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))
assert fresnels(2 + 3*I).as_real_imag() == (
fresnels(2 + 3*I)/2 + fresnels(2 - 3*I)/2,
I*(fresnels(2 - 3*I) - fresnels(2 + 3*I))/2
)
assert expand_func(integrate(fresnels(z), z)) == \
z*fresnels(z) + cos(pi*z**2/2)/pi
assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(9)/4) * \
meijerg(((), (1,)), ((S(3)/4,),
(S(1)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(3)/4)*(z**2)**(S(3)/4))
assert fresnelc(0) == 0
assert fresnelc(oo) == S.Half
assert fresnelc(-oo) == -S.Half
assert fresnelc(z) == fresnelc(z)
assert fresnelc(-z) == -fresnelc(z)
assert fresnelc(I*z) == I*fresnelc(z)
assert fresnelc(-I*z) == -I*fresnelc(z)
assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))
assert fresnelc(z).diff(z) == cos(pi*z**2/2)
assert fresnelc(z).rewrite(erf) == (S.One - I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnelc(z).rewrite(hyper) == \
z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16)
assert fresnelc(z).series(z, n=15) == \
z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15)
# issue 6510
assert fresnels(z).series(z, S.Infinity) == \
(-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + \
(3/(pi**3*z**5) - 1/(pi*z) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + S.Half
assert fresnelc(z).series(z, S.Infinity) == \
(-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + \
(-3/(pi**3*z**5) + 1/(pi*z) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + S.Half
assert fresnels(1/z).series(z) == \
(-z**3/pi**2 + O(z**6))*sin(pi/(2*z**2)) + (-z/pi + 3*z**5/pi**3 + \
O(z**6))*cos(pi/(2*z**2)) + S.Half
assert fresnelc(1/z).series(z) == \
(-z**3/pi**2 + O(z**6))*cos(pi/(2*z**2)) + (z/pi - 3*z**5/pi**3 + \
O(z**6))*sin(pi/(2*z**2)) + S.Half
assert fresnelc(w).is_real is True
assert fresnelc(z).as_real_imag() == \
((fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
I*(fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))
assert fresnelc(2 + 3*I).as_real_imag() == (
fresnelc(2 - 3*I)/2 + fresnelc(2 + 3*I)/2,
I*(fresnelc(2 - 3*I) - fresnelc(2 + 3*I))/2
)
assert expand_func(integrate(fresnelc(z), z)) == \
z*fresnelc(z) - sin(pi*z**2/2)/pi
assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(3)/4) * \
meijerg(((), (1,)), ((S(1)/4,),
(S(3)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(1)/4)*(z**2)**(S(1)/4))
#.........这里部分代码省略.........
示例7: test_laplace_transform
def test_laplace_transform():
from sympy import (fresnels, fresnelc, hyper)
LT = laplace_transform
a, b, c, = symbols('a b c', positive=True)
t = symbols('t')
w = Symbol("w")
f = Function("f")
# Test unevaluated form
assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w)
assert inverse_laplace_transform(
f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0)
# test a bug
spos = symbols('s', positive=True)
assert LT(exp(t), t, spos)[:2] == (1/(spos - 1), True)
# basic tests from wikipedia
assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \
((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True)
assert LT(t**a, t, s) == (s**(-a - 1)*gamma(a + 1), 0, True)
assert LT(Heaviside(t), t, s) == (1/s, 0, True)
assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True)
assert LT(1 - exp(-a*t), t, s) == (a/(s*(a + s)), 0, True)
assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \
== exp(-b)/(s**2 - 1)
assert LT(exp(t), t, s)[:2] == (1/(s - 1), 1)
assert LT(exp(2*t), t, s)[:2] == (1/(s - 2), 2)
assert LT(exp(a*t), t, s)[:2] == (1/(s - a), a)
assert LT(log(t/a), t, s) == ((log(a*s) + EulerGamma)/s/-1, 0, True)
assert LT(erf(t), t, s) == ((-erf(s/2) + 1)*exp(s**2/4)/s, 0, True)
assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True)
assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True)
# TODO would be nice to have these come out better
assert LT(
exp(-a*t)*sin(b*t), t, s) == (b/(b**2 + (a + s)**2), -a, True)
assert LT(exp(-a*t)*cos(b*t), t, s) == \
((a + s)/(b**2 + (a + s)**2), -a, True)
# TODO sinh, cosh have delicate cancellation
assert LT(besselj(0, t), t, s) == (1/sqrt(1 + s**2), 0, True)
assert LT(besselj(1, t), t, s) == (1 - 1/sqrt(1 + 1/s**2), 0, True)
# TODO general order works, but is a *mess*
# TODO besseli also works, but is an even greater mess
# test a bug in conditions processing
# TODO the auxiliary condition should be recognised/simplified
assert LT(exp(t)*cos(t), t, s)[:-1] in [
((s - 1)/(s**2 - 2*s + 2), -oo),
((s - 1)/((s - 1)**2 + 1), -oo),
]
# Fresnel functions
assert laplace_transform(fresnels(t), t, s) == \
((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 -
cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True)
assert laplace_transform(fresnelc(t), t, s) == (
(sin(s**2/(2*pi))*fresnelc(s/pi)/s - cos(s**2/(2*pi))*fresnels(s/pi)/s
+ sqrt(2)*cos(s**2/(2*pi) + pi/4)/(2*s), 0, True))
示例8: test_issue_3686
def test_issue_3686(): # remove this when fresnel itegrals are implemented
from sympy import expand_func, fresnels
assert expand_func(integrate(sin(x**2), x)) == \
sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2
示例9: test_fresnel
def test_fresnel():
from sympy import fresnels, fresnelc
assert expand_func(integrate(sin(pi * x ** 2 / 2), x)) == fresnels(x)
assert expand_func(integrate(cos(pi * x ** 2 / 2), x)) == fresnelc(x)