当前位置: 首页>>代码示例>>Python>>正文


Python sympy.factorial2函数代码示例

本文整理汇总了Python中sympy.factorial2函数的典型用法代码示例。如果您正苦于以下问题:Python factorial2函数的具体用法?Python factorial2怎么用?Python factorial2使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了factorial2函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_factorial2_rewrite

def test_factorial2_rewrite():
    n = Symbol('n', integer=True)
    assert factorial2(n).rewrite(gamma) == \
        2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1)
    assert factorial2(2*n).rewrite(gamma) == 2**n*gamma(n + 1)
    assert factorial2(2*n + 1).rewrite(gamma) == \
        sqrt(2)*2**(n + 1/2)*gamma(n + 3/2)/sqrt(pi)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:7,代码来源:test_comb_factorials.py

示例2: test_factorial2

def test_factorial2():
    n = Symbol('n', integer=True)
    assert factorial2(-1) == 1
    assert factorial2(0) == 1
    assert factorial2(7) == 105
    assert factorial2(8) == 384
    assert factorial2(n).func == Factorial2
开发者ID:addisonc,项目名称:sympy,代码行数:7,代码来源:test_comb_factorials.py

示例3: test_latex_functions

def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1)+exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
    r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
    r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2,inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2,inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2),inv_trig_style="power",fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2,k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3,k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x+y)) == r"\Re {\left (x + y \right )}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x,y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta{\left (x \right )}'
开发者ID:songuke,项目名称:sympy,代码行数:55,代码来源:test_latex.py

示例4: test_factorial

def test_factorial():
    n = Symbol('n', integer=True)
    assert str(factorial(-2)) == "0"
    assert str(factorial(0)) == "1"
    assert str(factorial(7)) == "5040"
    assert str(factorial(n)) == "n!"
    assert str(factorial(2*n)) == "(2*n)!"
    assert str(factorial(factorial(n))) == '(n!)!'
    assert str(factorial(factorial2(n))) == '(n!!)!'
    assert str(factorial2(factorial(n))) == '(n!)!!'
    assert str(factorial2(factorial2(n))) == '(n!!)!!'
开发者ID:FireJade,项目名称:sympy,代码行数:11,代码来源:test_str.py

示例5: test_factorial

def test_factorial():
    n = Symbol('n', integer=True)
    assert str(factorial(-2)) == "zoo"
    assert str(factorial(0)) == "1"
    assert str(factorial(7)) == "5040"
    assert str(factorial(n)) == "factorial(n)"
    assert str(factorial(2*n)) == "factorial(2*n)"
    assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
    assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
    assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
    assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
    assert str(subfactorial(3)) == "2"
    assert str(subfactorial(n)) == "subfactorial(n)"
    assert str(subfactorial(2*n)) == "subfactorial(2*n)"
开发者ID:Lenqth,项目名称:sympy,代码行数:14,代码来源:test_str.py

示例6: test_factorial2

def test_factorial2():
    n = Symbol('n', integer=True)

    assert factorial2(-1) == 1
    assert factorial2(0) == 1
    assert factorial2(7) == 105
    assert factorial2(8) == 384

    # The following is exhaustive
    tt = Symbol('tt', integer=True, nonnegative=True)
    tte = Symbol('tte', even=True, nonnegative=True)
    tpe = Symbol('tpe', even=True, positive=True)
    tto = Symbol('tto', odd=True, nonnegative=True)
    tf = Symbol('tf', integer=True, nonnegative=False)
    tfe = Symbol('tfe', even=True, nonnegative=False)
    tfo = Symbol('tfo', odd=True, nonnegative=False)
    ft = Symbol('ft', integer=False, nonnegative=True)
    ff = Symbol('ff', integer=False, nonnegative=False)
    fn = Symbol('fn', integer=False)
    nt = Symbol('nt', nonnegative=True)
    nf = Symbol('nf', nonnegative=False)
    nn = Symbol('nn')
    #Solves and Fixes Issue #10388 - This is the updated test for the same solved issue
    raises (ValueError, lambda: factorial2(oo))
    raises (ValueError, lambda: factorial2(S(5)/2))
    assert factorial2(n).is_integer is None
    assert factorial2(tt - 1).is_integer
    assert factorial2(tte - 1).is_integer
    assert factorial2(tpe - 3).is_integer
    assert factorial2(tto - 4).is_integer
    assert factorial2(tto - 2).is_integer
    assert factorial2(tf).is_integer is None
    assert factorial2(tfe).is_integer is None
    assert factorial2(tfo).is_integer is None
    assert factorial2(ft).is_integer is None
    assert factorial2(ff).is_integer is None
    assert factorial2(fn).is_integer is None
    assert factorial2(nt).is_integer is None
    assert factorial2(nf).is_integer is None
    assert factorial2(nn).is_integer is None

    assert factorial2(n).is_positive is None
    assert factorial2(tt - 1).is_positive is True
    assert factorial2(tte - 1).is_positive is True
    assert factorial2(tpe - 3).is_positive is True
    assert factorial2(tpe - 1).is_positive is True
    assert factorial2(tto - 2).is_positive is True
    assert factorial2(tto - 1).is_positive is True
    assert factorial2(tf).is_positive is None
    assert factorial2(tfe).is_positive is None
    assert factorial2(tfo).is_positive is None
    assert factorial2(ft).is_positive is None
    assert factorial2(ff).is_positive is None
    assert factorial2(fn).is_positive is None
    assert factorial2(nt).is_positive is None
    assert factorial2(nf).is_positive is None
    assert factorial2(nn).is_positive is None

    assert factorial2(tt).is_even is None
    assert factorial2(tt).is_odd is None
    assert factorial2(tte).is_even is None
    assert factorial2(tte).is_odd is None
    assert factorial2(tte + 2).is_even is True
    assert factorial2(tpe).is_even is True
    assert factorial2(tto).is_odd is True
    assert factorial2(tf).is_even is None
    assert factorial2(tf).is_odd is None
    assert factorial2(tfe).is_even is None
    assert factorial2(tfe).is_odd is None
    assert factorial2(tfo).is_even is False
    assert factorial2(tfo).is_odd is None
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:71,代码来源:test_comb_factorials.py

示例7: test_factorial2

def test_factorial2():
    n = Symbol('n', integer=True)

    assert factorial2(-1) == 1
    assert factorial2(0) == 1
    assert factorial2(7) == 105
    assert factorial2(8) == 384
    assert factorial2(n).func == factorial2

    # The following is exhaustive
    tt = Symbol('tt', integer=True, nonnegative=True)
    tf = Symbol('tf', integer=True, nonnegative=False)
    ft = Symbol('ft', integer=False, nonnegative=True)
    ff = Symbol('ff', integer=False, nonnegative=False)
    fn = Symbol('fn', integer=False)
    nt = Symbol('nt', nonnegative=True)
    nf = Symbol('nf', nonnegative=False)
    nn = Symbol('nn')

    assert factorial2(tt - 1).is_integer
    assert factorial2(tf - 1).is_integer is False
    assert factorial2(n).is_integer is None
    assert factorial2(ft - 1).is_integer is False
    assert factorial2(ff - 1).is_integer is False
    assert factorial2(fn).is_integer is False
    assert factorial2(nt - 1).is_integer is None
    assert factorial2(nf - 1).is_integer is False
    assert factorial2(nn).is_integer is None
    assert factorial2(tt - 1).is_positive
    assert factorial2(tf - 1).is_positive is False
    assert factorial2(n).is_positive is None
    assert factorial2(ft - 1).is_positive is False
    assert factorial2(ff - 1).is_positive is False
    assert factorial2(fn).is_positive is False
    assert factorial2(nt - 1).is_positive is None
    assert factorial2(nf - 1).is_positive is False
    assert factorial2(nn).is_positive is None
开发者ID:rahvar,项目名称:sympy,代码行数:37,代码来源:test_comb_factorials.py

示例8: var

from sympy.printing import ccode

nmax = 30

xi = var('xi')

u = map(sympify, ['1./2. - 3./4.*xi + 1./4.*xi**3',
                  '1./8. - 1./8.*xi - 1./8.*xi**2 + 1./8.*xi**3',
                  '1./2. + 3./4.*xi - 1./4.*xi**3',
                  '-1./8. - 1./8.*xi + 1./8.*xi**2 + 1./8.*xi**3'])

for r in range(5, nmax+1):
    utmp = []
    for n in range(0, r//2+1):
        den = 2**n*factorial(n)*factorial(r-2*n-1)
        utmp.append((-1)**n*factorial2(2*r - 2*n - 7)/den * xi**(r-2*n-1)/1.)
    u.append(sum(utmp))

with open('../../../compmech/lib/src/bardell_functions.c', 'w') as f:
    f.write("// Bardell's hierarchical functions\n\n")
    f.write('// Number of terms: {0}\n\n'.format(len(u)))
    f.write('#include <stdlib.h>\n')
    f.write('#include <math.h>\n\n')
    f.write('#if defined(_WIN32) || defined(__WIN32__)\n')
    f.write('  #define EXPORTIT __declspec(dllexport)\n')
    f.write('#else\n')
    f.write('  #define EXPORTIT\n')
    f.write('#endif\n\n')
    f.write('EXPORTIT void calc_vec_f(double *f, double xi,\n' +
            '           double xi1t, double xi1r, double xi2t, double xi2r) {\n')
    consts = {0:'xi1t', 1:'xi1r', 2:'xi2t', 3:'xi2r'}
开发者ID:compmech,项目名称:compmech,代码行数:31,代码来源:bardell_functions_C.py

示例9: test_latex_functions

def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function("f")
    assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}"

    beta = Function("beta")

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}"
    assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}"

    assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)"
    assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)"

    assert latex(cot(x)) == r"\cot{\left (x \right )}"
    assert latex(coth(x)) == r"\coth{\left (x \right )}"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(root(x, y)) == r"x^{\frac{1}{y}}"
    assert latex(arg(x)) == r"\arg{\left (x \right )}"
    assert latex(zeta(x)) == r"\zeta\left(x\right)"

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}"
    assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}"
    assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)"
    assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}"
    assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}"
    assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}"
    assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}"

    assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)"
    assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}"
    assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)"
    assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)"
    assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}"
    assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)"
    assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}"
    assert latex(legendre(n, x)) == r"P_{n}\left(x\right)"
    assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)"
    assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(hermite(n, x)) == r"H_{n}\left(x\right)"
    assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}"

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
开发者ID:kushal124,项目名称:sympy,代码行数:99,代码来源:test_latex.py

示例10: test_factorial2

def test_factorial2():
    n = Symbol('n', integer=True)

    assert factorial2(-1) == 1
    assert factorial2(0) == 1
    assert factorial2(7) == 105
    assert factorial2(8) == 384
    assert factorial2(n).func == factorial2

    # The following is exhaustive
    tt = Symbol('tt', integer=True, nonnegative=True)
    tte = Symbol('tte', even=True, nonnegative=True)
    tpe = Symbol('tpe', even=True, positive=True)
    tto = Symbol('tto', odd=True, nonnegative=True)
    tf = Symbol('tf', integer=True, nonnegative=False)
    tfe = Symbol('tfe', even=True, nonnegative=False)
    tfo = Symbol('tfo', odd=True, nonnegative=False)
    ft = Symbol('ft', integer=False, nonnegative=True)
    ff = Symbol('ff', integer=False, nonnegative=False)
    fn = Symbol('fn', integer=False)
    nt = Symbol('nt', nonnegative=True)
    nf = Symbol('nf', nonnegative=False)
    nn = Symbol('nn')

    assert factorial2(n).is_integer is None
    assert factorial2(tt - 1).is_integer
    assert factorial2(tte - 1).is_integer
    assert factorial2(tpe - 3).is_integer
    # This should work, but it doesn't due to ...
    # assert factorial2(tto - 4).is_integer
    assert factorial2(tto - 2).is_integer
    assert factorial2(tf).is_integer is None
    assert factorial2(tfe).is_integer is None
    assert factorial2(tfo).is_integer is None
    assert factorial2(ft).is_integer is None
    assert factorial2(ff).is_integer is None
    assert factorial2(fn).is_integer is None
    assert factorial2(nt).is_integer is None
    assert factorial2(nf).is_integer is None
    assert factorial2(nn).is_integer is None

    assert factorial2(n).is_positive is None
    assert factorial2(tt - 1).is_positive is True
    assert factorial2(tte - 1).is_positive is True
    # This should work, but it doesn't due to ...
    # assert factorial2(tpe - 3).is_positive is True
    assert factorial2(tpe - 1).is_positive is True
    # This should work, but it doesn't due to ...
    # assert factorial2(tto - 2).is_positive is True
    assert factorial2(tto - 1).is_positive is True
    assert factorial2(tf).is_positive is None
    assert factorial2(tfe).is_positive is None
    assert factorial2(tfo).is_positive is None
    assert factorial2(ft).is_positive is None
    assert factorial2(ff).is_positive is None
    assert factorial2(fn).is_positive is None
    assert factorial2(nt).is_positive is None
    assert factorial2(nf).is_positive is None
    assert factorial2(nn).is_positive is None

    assert factorial2(tt).is_even is None
    assert factorial2(tt).is_odd is None
    assert factorial2(tte).is_even is None
    assert factorial2(tte).is_odd is None
    assert factorial2(tte + 2).is_even is True
    assert factorial2(tpe).is_even is True
    assert factorial2(tto).is_odd is True
    assert factorial2(tf).is_even is None
    assert factorial2(tf).is_odd is None
    assert factorial2(tfe).is_even is None
    assert factorial2(tfe).is_odd is None
    assert factorial2(tfo).is_even is False
    assert factorial2(tfo).is_odd is None
开发者ID:artcompiler,项目名称:artcompiler.github.com,代码行数:73,代码来源:test_comb_factorials.py

示例11: test_C3

def test_C3():
    assert (factorial2(10), factorial2(9)) == (3840, 945)
开发者ID:batya239,项目名称:sympy,代码行数:2,代码来源:test_wester.py

示例12: test_F3

def test_F3():
    assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
开发者ID:batya239,项目名称:sympy,代码行数:2,代码来源:test_wester.py

示例13: test_latex_functions

def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(
        FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
#.........这里部分代码省略.........
开发者ID:Ronn3y,项目名称:sympy,代码行数:101,代码来源:test_latex.py

示例14: test_latex_functions

def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re {\left (x + y \right )}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
开发者ID:arunenigma,项目名称:sympy,代码行数:81,代码来源:test_latex.py

示例15: test_factorial2

def test_factorial2():
    n = Symbol("n", integer=True)

    assert factorial2(-1) == 1
    assert factorial2(0) == 1
    assert factorial2(7) == 105
    assert factorial2(8) == 384
    assert factorial2(n).func == factorial2

    # The following is exhaustive
    tt = Symbol("tt", integer=True, nonnegative=True)
    tte = Symbol("tte", even=True, nonnegative=True)
    tpe = Symbol("tpe", even=True, positive=True)
    tto = Symbol("tto", odd=True, nonnegative=True)
    tf = Symbol("tf", integer=True, nonnegative=False)
    tfe = Symbol("tfe", even=True, nonnegative=False)
    tfo = Symbol("tfo", odd=True, nonnegative=False)
    ft = Symbol("ft", integer=False, nonnegative=True)
    ff = Symbol("ff", integer=False, nonnegative=False)
    fn = Symbol("fn", integer=False)
    nt = Symbol("nt", nonnegative=True)
    nf = Symbol("nf", nonnegative=False)
    nn = Symbol("nn")

    assert factorial2(n).is_integer is None
    assert factorial2(tt - 1).is_integer
    assert factorial2(tte - 1).is_integer
    assert factorial2(tpe - 3).is_integer
    assert factorial2(tto - 4).is_integer
    assert factorial2(tto - 2).is_integer
    assert factorial2(tf).is_integer is None
    assert factorial2(tfe).is_integer is None
    assert factorial2(tfo).is_integer is None
    assert factorial2(ft).is_integer is None
    assert factorial2(ff).is_integer is None
    assert factorial2(fn).is_integer is None
    assert factorial2(nt).is_integer is None
    assert factorial2(nf).is_integer is None
    assert factorial2(nn).is_integer is None

    assert factorial2(n).is_positive is None
    assert factorial2(tt - 1).is_positive is True
    assert factorial2(tte - 1).is_positive is True
    assert factorial2(tpe - 3).is_positive is True
    assert factorial2(tpe - 1).is_positive is True
    assert factorial2(tto - 2).is_positive is True
    assert factorial2(tto - 1).is_positive is True
    assert factorial2(tf).is_positive is None
    assert factorial2(tfe).is_positive is None
    assert factorial2(tfo).is_positive is None
    assert factorial2(ft).is_positive is None
    assert factorial2(ff).is_positive is None
    assert factorial2(fn).is_positive is None
    assert factorial2(nt).is_positive is None
    assert factorial2(nf).is_positive is None
    assert factorial2(nn).is_positive is None

    assert factorial2(tt).is_even is None
    assert factorial2(tt).is_odd is None
    assert factorial2(tte).is_even is None
    assert factorial2(tte).is_odd is None
    assert factorial2(tte + 2).is_even is True
    assert factorial2(tpe).is_even is True
    assert factorial2(tto).is_odd is True
    assert factorial2(tf).is_even is None
    assert factorial2(tf).is_odd is None
    assert factorial2(tfe).is_even is None
    assert factorial2(tfe).is_odd is None
    assert factorial2(tfo).is_even is False
    assert factorial2(tfo).is_odd is None
开发者ID:guanlongtianzi,项目名称:sympy,代码行数:70,代码来源:test_comb_factorials.py


注:本文中的sympy.factorial2函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。