本文整理汇总了Python中sympy.bessely函数的典型用法代码示例。如果您正苦于以下问题:Python bessely函数的具体用法?Python bessely怎么用?Python bessely使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了bessely函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_diff
def test_diff():
assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2
assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2
assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2
assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
示例2: test_rewrite
def test_rewrite():
from sympy import polar_lift, exp, I
assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S(1)/2, z)
assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S(1)/2, z)
assert besseli(n, z).rewrite(besselj) == \
exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
assert besselj(n, z).rewrite(besseli) == \
exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)
nu = randcplx()
assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)
assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)
assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)
# check that a rewrite was triggered, when the order is set to a generic
# symbol 'nu'
assert yn(nu, z) != yn(nu, z).rewrite(jn)
assert hn1(nu, z) != hn1(nu, z).rewrite(jn)
assert hn2(nu, z) != hn2(nu, z).rewrite(jn)
assert jn(nu, z) != jn(nu, z).rewrite(yn)
assert hn1(nu, z) != hn1(nu, z).rewrite(yn)
assert hn2(nu, z) != hn2(nu, z).rewrite(yn)
# rewriting spherical bessel functions (SBFs) w.r.t. besselj, bessely is
# not allowed if a generic symbol 'nu' is used as the order of the SBFs
# to avoid inconsistencies (the order of bessel[jy] is allowed to be
# complex-valued, whereas SBFs are defined only for integer orders)
order = nu
for f in (besselj, bessely):
assert yn(order, z) == yn(order, z).rewrite(f)
assert jn(order, z) == jn(order, z).rewrite(f)
assert hn1(order, z) == hn1(order, z).rewrite(f)
assert hn2(order, z) == hn2(order, z).rewrite(f)
# for integral orders rewriting SBFs w.r.t bessel[jy] is allowed
N = Symbol('n', integer=True)
ri = randint(-11, 10)
for order in (ri, N):
for f in (besselj, bessely):
assert yn(order, z) != yn(order, z).rewrite(f)
assert jn(order, z) != jn(order, z).rewrite(f)
assert hn1(order, z) != hn1(order, z).rewrite(f)
assert hn2(order, z) != hn2(order, z).rewrite(f)
for func, refunc in product((yn, jn, hn1, hn2),
(jn, yn, besselj, bessely)):
assert tn(func(ri, z), func(ri, z).rewrite(refunc), z)
示例3: test_bessel_eval
def test_bessel_eval():
from sympy import I
assert besselj(-4, z) == besselj(4, z)
assert besselj(-3, z) == -besselj(3, z)
assert bessely(-2, z) == bessely(2, z)
assert bessely(-1, z) == -bessely(1, z)
assert besselj(0, -z) == besselj(0, z)
assert besselj(1, -z) == -besselj(1, z)
assert besseli(0, I*z) == besselj(0, z)
assert besseli(1, I*z) == I*besselj(1, z)
assert besselj(3, I*z) == -I*besseli(3, z)
示例4: test_pmint_bessel_products
def test_pmint_bessel_products():
# Note: Derivatives of Bessel functions have many forms.
# Recurrence relations are needed for comparisons.
if ON_TRAVIS:
skip("Too slow for travis.")
f = x*besselj(nu, x)*bessely(nu, 2*x)
g = -2*x*besselj(nu, x)*bessely(nu - 1, 2*x)/3 + x*besselj(nu - 1, x)*bessely(nu, 2*x)/3
assert heurisch(f, x) == g
f = x*besselj(nu, x)*besselk(nu, 2*x)
g = -2*x*besselj(nu, x)*besselk(nu - 1, 2*x)/5 - x*besselj(nu - 1, x)*besselk(nu, 2*x)/5
assert heurisch(f, x) == g
示例5: test_hyper
def test_hyper():
for x in sorted(exparg):
test("erf", x, N(sp.erf(x)))
for x in sorted(exparg):
test("erfc", x, N(sp.erfc(x)))
gamarg = FiniteSet(*(x+S(1)/12 for x in exparg))
betarg = ProductSet(gamarg, gamarg)
for x in sorted(gamarg):
test("lgamma", x, N(sp.log(abs(sp.gamma(x)))))
for x in sorted(gamarg):
test("gamma", x, N(sp.gamma(x)))
for x, y in sorted(betarg, key=lambda (x, y): (y, x)):
test("beta", x, y, N(sp.beta(x, y)))
pgamarg = FiniteSet(S(1)/12, S(1)/3, S(3)/2, 5)
pgamargp = ProductSet(gamarg & Interval(0, oo, True), pgamarg)
for a, x in sorted(pgamargp):
test("pgamma", a, x, N(sp.lowergamma(a, x)))
for a, x in sorted(pgamargp):
test("pgammac", a, x, N(sp.uppergamma(a, x)))
for a, x in sorted(pgamargp):
test("pgammar", a, x, N(sp.lowergamma(a, x)/sp.gamma(a)))
for a, x in sorted(pgamargp):
test("pgammarc", a, x, N(sp.uppergamma(a, x)/sp.gamma(a)))
for a, x in sorted(pgamargp):
test("ipgammarc", a, N(sp.uppergamma(a, x)/sp.gamma(a)), x)
pbetargp = [(a, b, x) for a, b, x in ProductSet(betarg, pgamarg)
if a > 0 and b > 0 and x < 1]
pbetargp.sort(key=lambda (a, b, x): (b, a, x))
for a, b, x in pbetargp:
test("pbeta", a, b, x, mp.betainc(mpf(a), mpf(b), x2=mpf(x)))
for a, b, x in pbetargp:
test("pbetar", a, b, x, mp.betainc(mpf(a), mpf(b), x2=mpf(x),
regularized=True))
for a, b, x in pbetargp:
test("ipbetar", a, b, mp.betainc(mpf(a), mpf(b), x2=mpf(x),
regularized=True), x)
for x in sorted(posarg):
test("j0", x, N(sp.besselj(0, x)))
for x in sorted(posarg):
test("j1", x, N(sp.besselj(1, x)))
for x in sorted(posarg-FiniteSet(0)):
test("y0", x, N(sp.bessely(0, x)))
for x in sorted(posarg-FiniteSet(0)):
test("y1", x, N(sp.bessely(1, x)))
示例6: test_bessel_rand
def test_bessel_rand():
assert td(besselj(randcplx(), z), z)
assert td(bessely(randcplx(), z), z)
assert td(besseli(randcplx(), z), z)
assert td(besselk(randcplx(), z), z)
assert td(hankel1(randcplx(), z), z)
assert td(hankel2(randcplx(), z), z)
assert td(jn(randcplx(), z), z)
assert td(yn(randcplx(), z), z)
示例7: test_rewrite
def test_rewrite():
from sympy import polar_lift, exp, I
assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S(1)/2, z)
assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S(1)/2, z)
assert besseli(n, z).rewrite(besselj) == \
exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
assert besselj(n, z).rewrite(besseli) == \
exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)
nu = randcplx()
assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
示例8: test_bessel_eval
def test_bessel_eval():
from sympy import I, Symbol
n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False)
for f in [besselj, besseli]:
assert f(0, 0) == S.One
assert f(2.1, 0) == S.Zero
assert f(-3, 0) == S.Zero
assert f(-10.2, 0) == S.ComplexInfinity
assert f(1 + 3*I, 0) == S.Zero
assert f(-3 + I, 0) == S.ComplexInfinity
assert f(-2*I, 0) == S.NaN
assert f(n, 0) != S.One and f(n, 0) != S.Zero
assert f(m, 0) != S.One and f(m, 0) != S.Zero
assert f(k, 0) == S.Zero
assert bessely(0, 0) == S.NegativeInfinity
assert besselk(0, 0) == S.Infinity
for f in [bessely, besselk]:
assert f(1 + I, 0) == S.ComplexInfinity
assert f(I, 0) == S.NaN
for f in [besselj, bessely]:
assert f(m, S.Infinity) == S.Zero
assert f(m, S.NegativeInfinity) == S.Zero
for f in [besseli, besselk]:
assert f(m, I*S.Infinity) == S.Zero
assert f(m, I*S.NegativeInfinity) == S.Zero
for f in [besseli, besselk]:
assert f(-4, z) == f(4, z)
assert f(-3, z) == f(3, z)
assert f(-n, z) == f(n, z)
assert f(-m, z) != f(m, z)
for f in [besselj, bessely]:
assert f(-4, z) == f(4, z)
assert f(-3, z) == -f(3, z)
assert f(-n, z) == (-1)**n*f(n, z)
assert f(-m, z) != (-1)**m*f(m, z)
for f in [besselj, besseli]:
assert f(m, -z) == (-z)**m*z**(-m)*f(m, z)
assert besseli(2, -z) == besseli(2, z)
assert besseli(3, -z) == -besseli(3, z)
assert besselj(0, -z) == besselj(0, z)
assert besselj(1, -z) == -besselj(1, z)
assert besseli(0, I*z) == besselj(0, z)
assert besseli(1, I*z) == I*besselj(1, z)
assert besselj(3, I*z) == -I*besseli(3, z)
示例9: test_expand
def test_expand():
assert expand_func(besselj(S(1)/2, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert expand_func(
bessely(S(1)/2, z)) == -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
示例10: test_rewrite
def test_rewrite():
assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S(1)/2, z)
assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S(1)/2, z)
示例11: test_mellin_transform_bessel
def test_mellin_transform_bessel():
from sympy import Max, Min, hyper, meijerg
MT = mellin_transform
# 8.4.19
assert MT(besselj(a, 2*sqrt(x)), x, s) == \
(gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, S(3)/4), True)
assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(-2*s + S(1)/2)*gamma(a/2 + s + S(1)/2)/(
gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
-re(a)/2 - S(1)/2, S(1)/4), True)
assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(a/2 + s)*gamma(-2*s + S(1)/2)/(
gamma(-a/2 - s + S(1)/2)*gamma(a - 2*s + 1)), (
-re(a)/2, S(1)/4), True)
assert MT(besselj(a, sqrt(x))**2, x, s) == \
(gamma(a + s)*gamma(S(1)/2 - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
(-re(a), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
(gamma(s)*gamma(S(1)/2 - s)
/ (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
(0, S(1)/2), True)
# NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
# I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(gamma(1 - s)*gamma(a + s - S(1)/2)
/ (sqrt(pi)*gamma(S(3)/2 - s)*gamma(a - s + S(1)/2)),
(S(1)/2 - re(a), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
(4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
/ (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
*gamma( 1 - s + (a + b)/2)),
(-(re(a) + re(b))/2, S(1)/2), True)
assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
((Max(re(a), -re(a)), S(1)/2), True)
# Section 8.4.20
assert MT(bessely(a, 2*sqrt(x)), x, s) == \
(-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
(Max(-re(a)/2, re(a)/2), S(3)/4), True)
assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*sin(pi*(a/2 - s))*gamma(S(1)/2 - 2*s)
* gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
/ (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
(Max(-(re(a) + 1)/2, (re(a) - 1)/2), S(1)/4), True)
assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S(1)/2 - 2*s)
/ (sqrt(pi)*gamma(S(1)/2 - s - a/2)*gamma(S(1)/2 - s + a/2)),
(Max(-re(a)/2, re(a)/2), S(1)/4), True)
assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S(1)/2 - s)
/ (pi**S('3/2')*gamma(1 + a - s)),
(Max(-re(a), 0), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
* gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
/ (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
(Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S(1)/2), True)
# NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
# are a mess (no matter what way you look at it ...)
assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
((Max(-re(a), 0, re(a)), S(1)/2), True)
# Section 8.4.22
# TODO we can't do any of these (delicate cancellation)
# Section 8.4.23
assert MT(besselk(a, 2*sqrt(x)), x, s) == \
(gamma(
s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(
a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)*
gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True)
# TODO bessely(a, x)*besselk(a, x) is a mess
assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(gamma(s)*gamma(
a + s)*gamma(-s + S(1)/2)/(2*sqrt(pi)*gamma(a - s + 1)),
(Max(-re(a), 0), S(1)/2), True)
assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \
gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \
gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \
re(a)/2 - re(b)/2), S(1)/2), True)
# TODO products of besselk are a mess
mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
mt0 = combsimp((trigsimp(combsimp(mt[0].expand(func=True)))))
assert mt0 == 2*pi**(S(3)/2)*cos(pi*s)*gamma(-s + S(1)/2)/(
(cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1))
assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
示例12: test_expand
def test_expand():
from sympy import besselsimp, Symbol, exp, exp_polar, I
assert expand_func(besselj(S(1)/2, z).rewrite(jn)) == \
sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert expand_func(bessely(S(1)/2, z).rewrite(yn)) == \
-sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
# XXX: teach sin/cos to work around arguments like
# x*exp_polar(I*pi*n/2). Then change besselsimp -> expand_func
assert besselsimp(besselj(S(1)/2, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besselj(S(-1)/2, z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besselj(S(5)/2, z)) == \
-sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**(S(5)/2))
assert besselsimp(besselj(-S(5)/2, z)) == \
-sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**(S(5)/2))
assert besselsimp(bessely(S(1)/2, z)) == \
-(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
assert besselsimp(bessely(S(-1)/2, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(bessely(S(5)/2, z)) == \
sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**(S(5)/2))
assert besselsimp(bessely(S(-5)/2, z)) == \
-sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**(S(5)/2))
assert besselsimp(besseli(S(1)/2, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(S(-1)/2, z)) == \
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(S(5)/2, z)) == \
sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**(S(5)/2))
assert besselsimp(besseli(S(-5)/2, z)) == \
sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**(S(5)/2))
assert besselsimp(besselk(S(1)/2, z)) == \
besselsimp(besselk(S(-1)/2, z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
assert besselsimp(besselk(S(5)/2, z)) == \
besselsimp(besselk(S(-5)/2, z)) == \
sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**(S(5)/2))
def check(eq, ans):
return tn(eq, ans) and eq == ans
rn = randcplx(a=1, b=0, d=0, c=2)
for besselx in [besselj, bessely, besseli, besselk]:
ri = S(2*randint(-11, 10) + 1) / 2 # half integer in [-21/2, 21/2]
assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))
assert check(expand_func(besseli(rn, x)),
besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
assert check(expand_func(besseli(-rn, x)),
besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)
assert check(expand_func(besselj(rn, x)),
-besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
assert check(expand_func(besselj(-rn, x)),
-besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)
assert check(expand_func(besselk(rn, x)),
besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
assert check(expand_func(besselk(-rn, x)),
besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)
assert check(expand_func(bessely(rn, x)),
-bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
assert check(expand_func(bessely(-rn, x)),
-bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)
n = Symbol('n', integer=True, positive=True)
assert expand_func(besseli(n + 2, z)) == \
besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
assert expand_func(besselj(n + 2, z)) == \
-besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
assert expand_func(besselk(n + 2, z)) == \
besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
assert expand_func(bessely(n + 2, z)) == \
-bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z
assert expand_func(besseli(n + S(1)/2, z).rewrite(jn)) == \
(sqrt(2)*sqrt(z)*exp(-I*pi*(n + S(1)/2)/2) *
exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
assert expand_func(besselj(n + S(1)/2, z).rewrite(jn)) == \
sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
i = Symbol('i', integer=True)
for besselx in [besselj, bessely, besseli, besselk]:
assert besselx(i, p).is_real
assert besselx(i, x).is_real is None
assert besselx(x, z).is_real is None
for besselx in [besselj, besseli]:
assert besselx(i, r).is_real
for besselx in [bessely, besselk]:
assert besselx(i, r).is_real is None
示例13: test_expand
def test_expand():
from sympy import besselsimp, Symbol, exp, exp_polar, I
assert expand_func(besselj(S(1)/2, z).rewrite(jn)) == \
sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
assert expand_func(bessely(S(1)/2, z).rewrite(yn)) == \
-sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
# XXX: teach sin/cos to work around arguments like
# x*exp_polar(I*pi*n/2). Then change besselsimp -> expand_func
assert besselsimp(besseli(S(1)/2, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
def check(eq, ans):
return tn(eq, ans) and eq == ans
rn = randcplx(a=1, b=0, d=0, c=2)
assert check(expand_func(besseli(rn, x)), \
besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
assert check(expand_func(besseli(-rn, x)), \
besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)
assert check(expand_func(besselj(rn, x)), \
-besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
assert check(expand_func(besselj(-rn, x)), \
-besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)
assert check(expand_func(besselk(rn, x)), \
besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
assert check(expand_func(besselk(-rn, x)), \
besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)
assert check(expand_func(bessely(rn, x)), \
-bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
assert check(expand_func(bessely(-rn, x)), \
-bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)
n = Symbol('n', integer=True, positive=True)
assert expand_func(besseli(n + 2, z)) == \
besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
assert expand_func(besselj(n + 2, z)) == \
-besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
assert expand_func(besselk(n + 2, z)) == \
besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
assert expand_func(bessely(n + 2, z)) == \
-bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z
assert expand_func(besseli(n + S(1)/2, z).rewrite(jn)) == \
sqrt(2)*sqrt(z)*exp(-I*pi*(n + S(1)/2)/2)* \
exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi)
assert expand_func(besselj(n + S(1)/2, z).rewrite(jn)) == \
sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)
示例14: test_mellin_transform
#.........这里部分代码省略.........
assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True)
assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True)
# 8.4.5
assert MT(log(x)**4*Heaviside(1-x), x, s) == (24/s**5, (0, oo), True)
assert MT(log(x)**3*Heaviside(x-1), x, s) == (6/s**4, (-oo, 0), True)
assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True)
assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True)
assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True)
assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True)
# TODO we cannot currently do these (needs summation of 3F2(-1))
# this also implies that they cannot be written as a single g-function
# (although this is possible)
mt = MT(log(x)/(x+1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)**2/(x+1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)/(x+1)**2, x, s)
assert mt[1:] == ((0, 2), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
# 8.4.14
assert MT(erf(sqrt(x)), x, s) == \
(-gamma(s + S(1)/2)/(sqrt(pi)*s), (-S(1)/2, 0), True)
# 8.4.19
assert MT(besselj(a, 2*sqrt(x)), x, s) == \
(gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, S(3)/4), True)
assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(S(1)/2 - 2*s)*gamma((a+1)/2 + s) \
/ (gamma(1 - s- a/2)*gamma(1 + a - 2*s)),
(-(re(a) + 1)/2, S(1)/4), True)
assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(a/2 + s)*gamma(S(1)/2 - 2*s)
/ (gamma(S(1)/2 - s - a/2)*gamma(a - 2*s + 1)),
(-re(a)/2, S(1)/4), True)
assert MT(besselj(a, sqrt(x))**2, x, s) == \
(gamma(a + s)*gamma(S(1)/2 - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
(-re(a), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
(gamma(s)*gamma(S(1)/2 - s)
/ (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
(0, S(1)/2), True)
# NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
# I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(gamma(1-s)*gamma(a + s - S(1)/2)
/ (sqrt(pi)*gamma(S(3)/2 - s)*gamma(a - s + S(1)/2)),
(S(1)/2 - re(a), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
(4**s*gamma(1 - 2*s)*gamma((a+b)/2 + s)
/ (gamma(1 - s + (b-a)/2)*gamma(1 - s + (a-b)/2)
*gamma( 1 - s + (a+b)/2)),
(-(re(a) + re(b))/2, S(1)/2), True)
assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
((Max(re(a), -re(a)), S(1)/2), True)
# Section 8.4.20
assert MT(bessely(a, 2*sqrt(x)), x, s) == \
(-cos(pi*a/2 - pi*s)*gamma(s - a/2)*gamma(s + a/2)/pi,
(Max(-re(a)/2, re(a)/2), S(3)/4), True)
assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*sin(pi*a/2 - pi*s)*gamma(S(1)/2 - 2*s)
* gamma((1-a)/2 + s)*gamma((1+a)/2 + s)
/ (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
(Max(-(re(a) + 1)/2, (re(a) - 1)/2), S(1)/4), True)
assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*cos(pi*a/2 - pi*s)*gamma(s - a/2)*gamma(s + a/2)*gamma(S(1)/2 - 2*s)
/ (sqrt(pi)*gamma(S(1)/2 - s - a/2)*gamma(S(1)/2 - s + a/2)),
(Max(-re(a)/2, re(a)/2), S(1)/4), True)
assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S(1)/2 - s)
/ (pi**S('3/2')*gamma(1 + a - s)),
(Max(-re(a), 0), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
(-4**s*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(1 - 2*s)
* gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
/ (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
(Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S(1)/2), True)
assert MT(bessely(a, sqrt(x))**2, x, s) == \
((2*cos(pi*a - pi*s)*gamma(s)*gamma(-a + s)*gamma(-s + 1)*gamma(a - s + 1) \
+ pi*gamma(-s + S(1)/2)*gamma(s + S(1)/2)) \
*gamma(a + s)/(pi**(S(3)/2)*gamma(-s + 1)*gamma(s + S(1)/2)*gamma(a - s + 1)),
(Max(-re(a), 0, re(a)), S(1)/2), True)
# TODO bessely(a, sqrt(x))*bessely(b, sqrt(x)) is a mess
# (no matter what way you look at it ...)
# Section 8.4.22
# TODO we can't do any of these (delicate cancellation)
# Section 8.4.23
assert MT(besselk(a, 2*sqrt(x)), x, s) == \
(gamma(s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
# TODO this result needs expansion of F(a, b; c; 1) using gauss-summation
assert MT(exp(-x/2)*besselk(a, x/2), x, s)[1:] == \
((Max(-re(a), re(a)), oo), True)
示例15: test_mellin_transform_bessel
def test_mellin_transform_bessel():
from sympy import Max, Min, hyper, meijerg
MT = mellin_transform
# 8.4.19
assert MT(besselj(a, 2*sqrt(x)), x, s) == \
(gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, S(3)/4), True)
assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(S(1)/2 - 2*s)*gamma((a+1)/2 + s) \
/ (gamma(1 - s- a/2)*gamma(1 + a - 2*s)),
(-(re(a) + 1)/2, S(1)/4), True)
# TODO why does this 2**(a+2)/4 not cancel?
assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**(a+2)*gamma(a/2 + s)*gamma(S(1)/2 - 2*s)
/ (gamma(S(1)/2 - s - a/2)*gamma(a - 2*s + 1)) / 4,
(-re(a)/2, S(1)/4), True)
assert MT(besselj(a, sqrt(x))**2, x, s) == \
(gamma(a + s)*gamma(S(1)/2 - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
(-re(a), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
(gamma(s)*gamma(S(1)/2 - s)
/ (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
(0, S(1)/2), True)
# NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
# I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(gamma(1-s)*gamma(a + s - S(1)/2)
/ (sqrt(pi)*gamma(S(3)/2 - s)*gamma(a - s + S(1)/2)),
(S(1)/2 - re(a), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
(2**(2*s)*gamma(1 - 2*s)*gamma((a+b)/2 + s)
/ (gamma(1 - s + (b-a)/2)*gamma(1 - s + (a-b)/2)
*gamma( 1 - s + (a+b)/2)),
(-(re(a) + re(b))/2, S(1)/2), True)
assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
((Max(re(a), -re(a)), S(1)/2), True)
# Section 8.4.20
assert MT(bessely(a, 2*sqrt(x)), x, s) == \
(-cos(pi*a/2 - pi*s)*gamma(s - a/2)*gamma(s + a/2)/pi,
(Max(-re(a)/2, re(a)/2), S(3)/4), True)
assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-2**(2*s)*sin(pi*a/2 - pi*s)*gamma(S(1)/2 - 2*s)
* gamma((1-a)/2 + s)*gamma((1+a)/2 + s)
/ (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
(Max(-(re(a) + 1)/2, (re(a) - 1)/2), S(1)/4), True)
assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-2**(2*s)*cos(pi*a/2 - pi*s)*gamma(s - a/2)*gamma(s + a/2)*gamma(S(1)/2 - 2*s)
/ (sqrt(pi)*gamma(S(1)/2 - s - a/2)*gamma(S(1)/2 - s + a/2)),
(Max(-re(a)/2, re(a)/2), S(1)/4), True)
assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S(1)/2 - s)
/ (pi**S('3/2')*gamma(1 + a - s)),
(Max(-re(a), 0), S(1)/2), True)
assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(1 - 2*s)
* gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
/ (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
(Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S(1)/2), True)
# NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
# are a mess (no matter what way you look at it ...)
assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
((Max(-re(a), 0, re(a)), S(1)/2), True)
# Section 8.4.22
# TODO we can't do any of these (delicate cancellation)
# Section 8.4.23
assert MT(besselk(a, 2*sqrt(x)), x, s) == \
(gamma(s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(a, 2*sqrt(2*sqrt(x))), x, s) == \
(4**(-s)*gamma(2*s)*gamma(a/2 + s)/gamma(a/2 - s + 1)/2,
(Max(-re(a)/2, 0), oo), True)
# TODO bessely(a, x)*besselk(a, x) is a mess
assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(gamma(s)*gamma(a + s)*gamma(-s + S(1)/2)/(2*sqrt(pi)*gamma(a - s + 1)),
(Max(-re(a), 0), S(1)/2), True)
assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)*gamma(a/2 + b/2 + s) \
/(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
(Max(-re(a)/2 - re(b)/2, re(a)/2 - re(b)/2), S(1)/2), True)
# TODO products of besselk are a mess
# TODO this can be simplified considerably (although I have no idea how)
mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
assert not mt[0].has(meijerg, hyper)
assert mt[1:] == ((Max(-re(a), re(a)), oo), True)