本文整理汇总了Python中sympy.ask函数的典型用法代码示例。如果您正苦于以下问题:Python ask函数的具体用法?Python ask怎么用?Python ask使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ask函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_triangular
def test_triangular():
assert ask(Q.upper_triangular(X+Z.T+Identity(2)), Q.upper_triangular(X) &
Q.lower_triangular(Z)) is True
assert ask(Q.upper_triangular(X*Z.T), Q.upper_triangular(X) &
Q.lower_triangular(Z)) is True
assert ask(Q.lower_triangular(Identity(3))) is True
assert ask(Q.lower_triangular(ZeroMatrix(3, 3))) is True
示例2: test_assumptions
def test_assumptions():
n = Symbol('n')
A = MatrixSymbol('A', 1, n)
P = PermutationMatrix(A)
assert ask(Q.integer_elements(P))
assert ask(Q.real_elements(P))
assert ask(Q.complex_elements(P))
示例3: test_non_trivial_implies
def test_non_trivial_implies():
X = MatrixSymbol('X', 3, 3)
Y = MatrixSymbol('Y', 3, 3)
assert ask(Q.lower_triangular(X+Y), Q.lower_triangular(X) &
Q.lower_triangular(Y))
assert ask(Q.triangular(X), Q.lower_triangular(X))
assert ask(Q.triangular(X+Y), Q.lower_triangular(X) &
Q.lower_triangular(Y))
示例4: _eval_determinant
def _eval_determinant(self):
if self.blockshape == (2, 2):
[[A, B],
[C, D]] = self.blocks.tolist()
if ask(Q.invertible(A)):
return det(A)*det(D - C*A.I*B)
elif ask(Q.invertible(D)):
return det(D)*det(A - B*D.I*C)
return Determinant(self)
示例5: test_orthogonal
def test_orthogonal():
assert ask(Q.orthogonal(X), Q.orthogonal(X))
assert ask(Q.orthogonal(X.T), Q.orthogonal(X)) is True
assert ask(Q.orthogonal(X.I), Q.orthogonal(X)) is True
assert ask(Q.orthogonal(Y)) is False
assert ask(Q.orthogonal(X)) is None
assert ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) is True
assert ask(Q.orthogonal(Identity(3))) is True
assert ask(Q.orthogonal(ZeroMatrix(3, 3))) is False
assert ask(Q.invertible(X), Q.orthogonal(X))
assert not ask(Q.orthogonal(X+Z), Q.orthogonal(X) & Q.orthogonal(Z))
示例6: test_invertible
def test_invertible():
assert ask(Q.invertible(X), Q.invertible(X))
assert ask(Q.invertible(Y)) is False
assert ask(Q.invertible(X*Y), Q.invertible(X)) is False
assert ask(Q.invertible(X*Z), Q.invertible(X)) is None
assert ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) is True
assert ask(Q.invertible(X.T)) is None
assert ask(Q.invertible(X.T), Q.invertible(X)) is True
assert ask(Q.invertible(X.I)) is True
assert ask(Q.invertible(Identity(3))) is True
assert ask(Q.invertible(ZeroMatrix(3, 3))) is False
示例7: _test_orthogonal_unitary
def _test_orthogonal_unitary(predicate):
assert ask(predicate(X), predicate(X))
assert ask(predicate(X.T), predicate(X)) is True
assert ask(predicate(X.I), predicate(X)) is True
assert ask(predicate(Y)) is False
assert ask(predicate(X)) is None
assert ask(predicate(X*Z*X), predicate(X) & predicate(Z)) is True
assert ask(predicate(Identity(3))) is True
assert ask(predicate(ZeroMatrix(3, 3))) is False
assert ask(Q.invertible(X), predicate(X))
assert not ask(predicate(X + Z), predicate(X) & predicate(Z))
示例8: test_fullrank
def test_fullrank():
assert ask(Q.fullrank(X), Q.fullrank(X))
assert ask(Q.fullrank(X**2), Q.fullrank(X))
assert ask(Q.fullrank(X.T), Q.fullrank(X)) is True
assert ask(Q.fullrank(X)) is None
assert ask(Q.fullrank(Y)) is None
assert ask(Q.fullrank(X*Z), Q.fullrank(X) & Q.fullrank(Z)) is True
assert ask(Q.fullrank(Identity(3))) is True
assert ask(Q.fullrank(ZeroMatrix(3, 3))) is False
assert ask(Q.invertible(X), ~Q.fullrank(X)) == False
示例9: test_symmetric
def test_symmetric():
assert ask(Q.symmetric(X), Q.symmetric(X))
assert ask(Q.symmetric(X*Z), Q.symmetric(X)) is None
assert ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) is True
assert ask(Q.symmetric(X+Z), Q.symmetric(X) & Q.symmetric(Z)) is True
assert ask(Q.symmetric(Y)) is False
assert ask(Q.symmetric(Y*Y.T)) is True
assert ask(Q.symmetric(Y.T*X*Y)) is None
assert ask(Q.symmetric(Y.T*X*Y), Q.symmetric(X)) is True
assert ask(Q.symmetric(X*X*X*X*X*X*X*X*X*X), Q.symmetric(X)) is True
示例10: dtype_of
def dtype_of(expr, *assumptions):
if hasattr(expr, 'fortran_type'):
return expr.fortran_type()
with assuming(*assumptions):
if ask(Q.integer(expr) | Q.integer_elements(expr)) or expr.is_integer:
result = 'integer'
elif ask(Q.real(expr) | Q.real_elements(expr)) or expr.is_real:
result = 'real(kind=8)'
elif ask(Q.complex(expr) | Q.complex_elements(expr)) or expr.is_complex:
result = 'complex(kind=8)'
else:
raise TypeError('Could not infer type of %s'%str(expr))
return result
示例11: test_MatrixSlice
def test_MatrixSlice():
X = MatrixSymbol('X', 4, 4)
B = MatrixSlice(X, (1, 3), (1, 3))
C = MatrixSlice(X, (0, 3), (1, 3))
assert ask(Q.symmetric(B), Q.symmetric(X))
assert ask(Q.invertible(B), Q.invertible(X))
assert ask(Q.diagonal(B), Q.diagonal(X))
assert ask(Q.orthogonal(B), Q.orthogonal(X))
assert ask(Q.upper_triangular(B), Q.upper_triangular(X))
assert not ask(Q.symmetric(C), Q.symmetric(X))
assert not ask(Q.invertible(C), Q.invertible(X))
assert not ask(Q.diagonal(C), Q.diagonal(X))
assert not ask(Q.orthogonal(C), Q.orthogonal(X))
assert not ask(Q.upper_triangular(C), Q.upper_triangular(X))
示例12: doit
def doit(self, expand=False):
if ask(Q.singular(self)):
return S.Zero
try:
return self.arg._eval_determinant()
except (AttributeError, NotImplementedError):
return self
示例13: isolate
def isolate(alg, eps=None, fast=False):
"""Give a rational isolating interval for an algebraic number. """
alg = sympify(alg)
if alg.is_Rational:
return (alg, alg)
elif not ask(Q.real(alg)):
raise NotImplementedError(
"complex algebraic numbers are not supported")
func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter())
poly = minpoly(alg, polys=True)
intervals = poly.intervals(sqf=True)
dps, done = mp.dps, False
try:
while not done:
alg = func()
for a, b in intervals:
if a <= alg.a and alg.b <= b:
done = True
break
else:
mp.dps *= 2
finally:
mp.dps = dps
if eps is not None:
a, b = poly.refine_root(a, b, eps=eps, fast=fast)
return (a, b)
示例14: arctan_rule
def arctan_rule(integral):
integrand, symbol = integral
base, exp = integrand.as_base_exp()
if sympy.simplify(exp + 1) == 0:
a = sympy.Wild('a', exclude=[symbol])
b = sympy.Wild('b', exclude=[symbol])
match = base.match(a + b*symbol**2)
if match:
a, b = match[a], match[b]
if ((isinstance(a, sympy.Number) and a < 0) or (isinstance(b, sympy.Number) and b < 0)):
return
if (sympy.ask(sympy.Q.negative(a) | sympy.Q.negative(b) | sympy.Q.is_true(a <= 0) | sympy.Q.is_true(b <= 0))):
return
# / dx 1 / dx 1 / dx | | 1 1 / du
# | --------- = -- | -------------- = -- | -------------------- = | sqrt(b/a)x = u | = -- ---------- | -------
# / a + bx^2 a / 1 + (b/a)x^2 a / 1 + (sqrt(b/a)x)^2 | dx = du / sqrt(b/a) | a sqrt(b/a) / 1 + u^2
if a == 1 and b == 1:
return ArctanRule(integrand, symbol)
if a == b:
constant = 1 / a
integrand_ = 1 / (1 + symbol**2)
substep = ArctanRule(integrand_, symbol)
return ConstantTimesRule(constant, integrand_, substep, integrand, symbol)
u_var = new_symbol_(symbol)
u_func = sympy.sqrt(sympy.sympify(b) / a) * symbol
integrand_ = 1 / (1 + u_func**2)
constant = 1 / sympy.sqrt(sympy.sympify(b) / a)
substituted = 1 / (1 + u_var**2)
substep = ArctanRule(substituted, u_var)
substep = ConstantTimesRule(constant, substituted, substep, constant*substituted, u_var)
substep = URule(u_var, u_func, constant, substep, constant*substituted, integrand_, symbol)
return ConstantTimesRule(1/a, integrand_, substep, integrand, symbol)
示例15: substitution_rule
def substitution_rule(integral):
integrand, symbol = integral
u_var = sympy.Dummy("u")
substitutions = find_substitutions(integrand, symbol, u_var)
if substitutions:
ways = []
for u_func, c, substituted in substitutions:
subrule = integral_steps(substituted, u_var)
if contains_dont_know(subrule):
continue
if sympy.simplify(c - 1) != 0:
_, denom = c.as_numer_denom()
subrule = ConstantTimesRule(c, substituted, subrule, substituted, symbol)
if denom.free_symbols:
piecewise = []
could_be_zero = []
if isinstance(denom, sympy.Mul):
could_be_zero = denom.args
else:
could_be_zero.append(denom)
for expr in could_be_zero:
if not sympy.ask(~sympy.Q.zero(expr)):
substep = integral_steps(integrand.subs(expr, 0), symbol)
if substep:
piecewise.append((
substep,
sympy.Eq(expr, 0)
))
piecewise.append((subrule, True))
subrule = PiecewiseRule(piecewise, substituted, symbol)
ways.append(URule(u_var, u_func, c,
subrule,
integrand, symbol))
if len(ways) > 1:
return AlternativeRule(ways, integrand, symbol)
elif ways:
return ways[0]
elif integrand.has(sympy.exp):
u_func = sympy.exp(symbol)
c = 1
substituted = integrand / u_func.diff(symbol)
substituted = substituted.subs(u_func, u_var)
if symbol not in substituted.free_symbols:
return URule(u_var, u_func, c,
integral_steps(substituted, u_var),
integrand, symbol)