本文整理汇总了Python中streamhist.StreamHist.quantiles方法的典型用法代码示例。如果您正苦于以下问题:Python StreamHist.quantiles方法的具体用法?Python StreamHist.quantiles怎么用?Python StreamHist.quantiles使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类streamhist.StreamHist
的用法示例。
在下文中一共展示了StreamHist.quantiles方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_regression
# 需要导入模块: from streamhist import StreamHist [as 别名]
# 或者: from streamhist.StreamHist import quantiles [as 别名]
def test_regression():
random.seed(1700)
data = make_normal(10000)
hist1 = StreamHist(maxbins=5)
hist2 = StreamHist(maxbins=5, weighted=True)
# hist3 = StreamHist(maxbins=5, weighted=True)
hist4 = StreamHist(maxbins=5)
hist1.update(data)
hist2.update(data)
hist3 = hist2 + hist1
hist4.update(range(10000))
reg = [{'count': 1176.0, 'mean': -1.622498097884402},
{'count': 5290.0, 'mean': -0.3390892100898127},
{'count': 3497.0, 'mean': 1.0310297400593385},
{'count': 35.0, 'mean': 2.2157182954841126},
{'count': 2.0, 'mean': 3.563619987633774}]
assert hist1.to_dict()["bins"] == reg
reg = [-1.022649473089556, -0.5279748744244142, 0.1476067074922296,
0.9815338358189885, 1.6627248917927795]
assert hist1.quantiles(0.1, 0.25, 0.5, 0.75, 0.9) == reg
reg = [{'count': 579.0, 'mean': -2.017257931684027},
{'count': 1902.0, 'mean': -1.0677091300958608},
{'count': 3061.0, 'mean': -0.24660751313691653},
{'count': 2986.0, 'mean': 0.5523120572161528},
{'count': 1472.0, 'mean': 1.557598912751095}]
assert hist2.to_dict()["bins"] == reg
reg = [-1.1941285587341846, -0.6041467139342105, 0.08840996549170466,
0.8247014091807423, 1.557598912751095]
assert hist2.quantiles(0.1, 0.25, 0.5, 0.75, 0.9) == reg
reg = [{'count': 1755.0, 'mean': -1.7527351028815432},
{'count': 1902.0, 'mean': -1.0677091300958608},
{'count': 8351.0, 'mean': -0.3051906980106826},
{'count': 6483.0, 'mean': 0.8105375295133331},
{'count': 1509.0, 'mean': 1.5755221868037264}]
assert hist3.to_dict()["bins"] == reg
reg = [-1.0074328972882012, -0.5037558708214145, 0.11958766584785563,
0.8874923692642509, 1.432517386448461]
assert hist3.quantiles(0.1, 0.25, 0.5, 0.75, 0.9) == reg
reg = [{'count': 1339.0, 'mean': 669.0},
{'count': 2673.0, 'mean': 2675.0},
{'count': 1338.0, 'mean': 4680.5},
{'count': 2672.0, 'mean': 6685.5},
{'count': 1978.0, 'mean': 9010.5}]
assert hist4.to_dict()["bins"] == reg
reg = [1830.581598358843, 3063.70150218845, 5831.110283907479,
8084.851093080222, 9010.5]
assert hist4.quantiles(0.1, 0.25, 0.5, 0.75, 0.9) == reg
示例2: test_quantiles
# 需要导入模块: from streamhist import StreamHist [as 别名]
# 或者: from streamhist.StreamHist import quantiles [as 别名]
def test_quantiles():
points = 10000
h = StreamHist()
for p in make_uniform(points):
h.update(p)
assert about(h.quantiles(0.5)[0], 0.5, 0.05)
h = StreamHist()
for p in make_normal(points):
h.update(p)
a, b, c = h.quantiles(0.25, 0.5, 0.75)
assert about(a, -0.66, 0.05)
assert about(b, 0.00, 0.05)
assert about(c, 0.66, 0.05)
示例3: test_multi_merge
# 需要导入模块: from streamhist import StreamHist [as 别名]
# 或者: from streamhist.StreamHist import quantiles [as 别名]
def test_multi_merge():
points = 100000
data = make_uniform(points)
samples = [data[x:x+100] for x in range(0, len(data), 100)]
hists = [StreamHist().update(s) for s in samples]
h1 = sum(hists)
h2 = StreamHist().update(data)
q1 = h1.quantiles(.1, .2, .3, .4, .5, .6, .7, .8, .9)
q2 = h2.quantiles(.1, .2, .3, .4, .5, .6, .7, .8, .9)
from numpy import allclose
assert allclose(q1, q2, rtol=1, atol=0.025)