本文整理汇总了Python中statsmodels.tsa.stattools.acovf函数的典型用法代码示例。如果您正苦于以下问题:Python acovf函数的具体用法?Python acovf怎么用?Python acovf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了acovf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_acovf_fft_vs_convolution
def test_acovf_fft_vs_convolution(demean, unbiased):
np.random.seed(1)
q = np.random.normal(size=100)
F1 = acovf(q, demean=demean, unbiased=unbiased, fft=True)
F2 = acovf(q, demean=demean, unbiased=unbiased, fft=False)
assert_almost_equal(F1, F2, decimal=7)
示例2: test_acovf2d
def test_acovf2d():
dta = sunspots.load_pandas().data
dta.index = Index(dates_from_range('1700', '2008'))
del dta["YEAR"]
res = acovf(dta)
assert_equal(res, acovf(dta.values))
X = np.random.random((10,2))
assert_raises(ValueError, acovf, X)
示例3: test_acovf2d
def test_acovf2d():
dta = sunspots.load_pandas().data
dta.index = DatetimeIndex(start='1700', end='2009', freq='A')[:309]
del dta["YEAR"]
res = acovf(dta)
assert_equal(res, acovf(dta.values))
X = np.random.random((10,2))
assert_raises(ValueError, acovf, X)
示例4: test_acovf_nlags_missing
def test_acovf_nlags_missing(acovf_data, unbiased, demean, fft, missing):
acovf_data = acovf_data.copy()
acovf_data[1:3] = np.nan
full = acovf(acovf_data, unbiased=unbiased, demean=demean, fft=fft,
missing=missing)
limited = acovf(acovf_data, unbiased=unbiased, demean=demean, fft=fft,
missing=missing, nlag=10)
assert_allclose(full[:11], limited)
示例5: test_acovf2d
def test_acovf2d(reset_randomstate):
dta = sunspots.load_pandas().data
dta.index = date_range(start='1700', end='2009', freq='A')[:309]
del dta["YEAR"]
res = acovf(dta, fft=False)
assert_equal(res, acovf(dta.values, fft=False))
x = np.random.random((10, 2))
with pytest.raises(ValueError):
acovf(x, fft=False)
示例6: levinson_durbin_nitime
def levinson_durbin_nitime(s, order=10, isacov=False):
'''Levinson-Durbin recursion for autoregressive processes
'''
#from nitime
## if sxx is not None and type(sxx) == np.ndarray:
## sxx_m = sxx[:order+1]
## else:
## sxx_m = ut.autocov(s)[:order+1]
if isacov:
sxx_m = s
else:
sxx_m = acovf(s)[:order+1] #not tested
phi = np.zeros((order+1, order+1), 'd')
sig = np.zeros(order+1)
# initial points for the recursion
phi[1,1] = sxx_m[1]/sxx_m[0]
sig[1] = sxx_m[0] - phi[1,1]*sxx_m[1]
for k in xrange(2,order+1):
phi[k,k] = (sxx_m[k]-np.dot(phi[1:k,k-1], sxx_m[1:k][::-1]))/sig[k-1]
for j in xrange(1,k):
phi[j,k] = phi[j,k-1] - phi[k,k]*phi[k-j,k-1]
sig[k] = sig[k-1]*(1 - phi[k,k]**2)
sigma_v = sig[-1]; arcoefs = phi[1:,-1]
return sigma_v, arcoefs, pacf, phi #return everything
示例7: stationarity_convergence
def stationarity_convergence(phi):
m = 20 # burn in
n = len(phi) - m
if n <= 0:
return 0
na = max(1,int(0.1*n))
nb = max(1,int(0.5*n))
phi_a = phi[(m+n-na):(m+n)]
phi_b= phi[(m):(m+nb)]
phi_b= phi[(m+n-nb):(m+n)]
phi_b_bar = sum(phi_b)/nb
phi_a_bar = sum(phi_a)/na
if len(phi_a) <= 1 or len(phi_b) <= 1:
return 1
v_a = acovf(phi_a)
v_b = acovf(phi_b)
# n gets large and na/n and nb/n stay fixed
z_g = (phi_a_bar - phi_b_bar)/np.sqrt( v_a[0] + v_b[0] )
return z_g
示例8: ar_generator
arrvs = ar_generator()
##arma = ARIMA()
##res = arma.fit(arrvs[0], 4, 0)
arma = ARIMA(arrvs[0])
res = arma.fit((4,0, 0))
print(res[0])
acf1 = acf(arrvs[0])
acovf1b = acovf(arrvs[0], unbiased=False)
acf2 = autocorr(arrvs[0])
acf2m = autocorr(arrvs[0]-arrvs[0].mean())
print(acf1[:10])
print(acovf1b[:10])
print(acf2[:10])
print(acf2m[:10])
x = arma_generate_sample([1.0, -0.8], [1.0], 500)
print(acf(x)[:20])
import statsmodels.api as sm
print(sm.regression.yule_walker(x, 10))
import matplotlib.pyplot as plt
#ax = plt.axes()
示例9: VARMA
B[:,:,1] = [[0,0],[0,0],[0,1]]
xhat5, err5 = VARMA(x,B,C)
#print(err5)
#in differences
#VARMA(np.diff(x,axis=0),B,C)
#Note:
# * signal correlate applies same filter to all columns if kernel.shape[1]<K
# e.g. signal.correlate(x0,np.ones((3,1)),'valid')
# * if kernel.shape[1]==K, then `valid` produces a single column
# -> possible to run signal.correlate K times with different filters,
# see the following example, which replicates VAR filter
x0 = np.column_stack([np.arange(T), 2*np.arange(T)])
B[:,:,0] = np.ones((P,K))
B[:,:,1] = np.ones((P,K))
B[1,1,1] = 0
xhat0 = VAR(x0,B)
xcorr00 = signal.correlate(x0,B[:,:,0])#[:,0]
xcorr01 = signal.correlate(x0,B[:,:,1])
print(np.all(signal.correlate(x0,B[:,:,0],'valid')[:-1,0]==xhat0[P:,0]))
print(np.all(signal.correlate(x0,B[:,:,1],'valid')[:-1,0]==xhat0[P:,1]))
#import error
#from movstat import acovf, acf
from statsmodels.tsa.stattools import acovf, acf
aav = acovf(x[:,0])
print(aav[0] == np.var(x[:,0]))
aac = acf(x[:,0])
示例10: test_pandasacovf
def test_pandasacovf():
s = Series(range(1, 11))
assert_almost_equal(acovf(s), acovf(s.values))
示例11: binLightCurve
print "T = %i s, t = %3.2f ms"%(T,1000.*newInt)
#try:
bins, lc = binLightCurve(timeSpan[0],timeSpan[0]+T, times, newInt)
lcAve = np.mean(lc)
print "<I> = %4.2f"%lcAve
lcVar = np.power(np.std(lc),2)
print "sigma(I)^2 = %3.3f"%lcVar
lcNorm = lc/lcAve
#plot timestream with T total seconds binned into t=(n+1)*intTime integration time bins
ax1.plot(bins,np.append(lcNorm,lcNorm[-1]),drawstyle='steps-post', label="%i s"%(T))
print "Calculating auto-covariance sequence..."
#acvs = acovf(lc,unbiased=True,demean=True) #* 1.0/(lcVar-lcAve)
acvs = acovf(lc,unbiased=False,demean=False)
#corr,ljb,pvalue = acf(lc,unbiased=True,qstat=True,nlags = T/newInt)
corr,ljb,pvalue = acf(lc,unbiased=False,qstat=True,nlags = T/newInt)
standalone_ljb, standalone_pvalue = acorr_ljungbox(lc)
print "Min(p-value) of acf Ljung-Box test = %f"%np.min(pvalue)
try:
print "Min(p) of acf LB at index %i of %i"%(np.where(pvalue==np.min(pvalue))[0],len(pvalue))
mostCorrLag = np.where(pvalue==np.min(pvalue))[0] * newInt*1000
print "Min(p) of acf LB at lag = %4.3f ms"%mostCorrLag
except TypeError:
print "Min(p) of acf LB at index %i of %i"%(np.where(pvalue==np.min(pvalue))[0][0],len(pvalue))
mostCorrLag = np.where(pvalue==np.min(pvalue))[0][0] * newInt*1000
示例12: acovf
plt.plot(wm,sdm/sdm[0], '-', wm[maxind], sdm[maxind]/sdm[0], 'o')
else:
plt.plot(wm, sdm, '-', wm[maxind], sdm[maxind], 'o')
plt.title('matplotlib')
if hastalkbox:
sdp, wp = stbs.periodogram(x)
plt.subplot(2,3,3)
if rescale:
plt.plot(wp,sdp/sdp[0])
else:
plt.plot(wp, sdp)
plt.title('stbs.periodogram')
xacov = acovf(x, unbiased=False)
plt.subplot(2,3,4)
plt.plot(xacov)
plt.title('autocovariance')
nr = len(x)#*2/3
#xacovfft = np.fft.fft(xacov[:nr], 2*nr-1)
xacovfft = np.fft.fft(np.correlate(x,x,'full'))
#abs(xacovfft)**2 or equivalently
xacovfft = xacovfft * xacovfft.conj()
plt.subplot(2,3,5)
if rescale:
plt.plot(xacovfft[:nr]/xacovfft[0])
else:
plt.plot(xacovfft[:nr])
示例13: test_acovf_warns
def test_acovf_warns(acovf_data):
with pytest.warns(FutureWarning):
acovf(acovf_data)
示例14: test_acovf_error
def test_acovf_error(acovf_data):
with pytest.raises(ValueError):
acovf(acovf_data, nlag=250, fft=False)
示例15: test_acovf_nlags
def test_acovf_nlags(acovf_data, unbiased, demean, fft, missing):
full = acovf(acovf_data, unbiased=unbiased, demean=demean, fft=fft,
missing=missing)
limited = acovf(acovf_data, unbiased=unbiased, demean=demean, fft=fft,
missing=missing, nlag=10)
assert_allclose(full[:11], limited)