本文整理汇总了Python中statsmodels.tsa.statespace.mlemodel.MLEModel类的典型用法代码示例。如果您正苦于以下问题:Python MLEModel类的具体用法?Python MLEModel怎么用?Python MLEModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MLEModel类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_summary
def test_summary():
dates = pd.date_range(start='1980-01-01', end='1984-01-01', freq='AS')
endog = pd.Series([1,2,3,4,5], index=dates)
mod = MLEModel(endog, **kwargs)
res = mod.filter([])
# Get the summary
txt = str(res.summary())
# Test res.summary when the model has dates
assert_equal(re.search('Sample:\s+01-01-1980', txt) is not None, True)
assert_equal(re.search('\s+- 01-01-1984', txt) is not None, True)
# Test res.summary when `model_name` was not provided
assert_equal(re.search('Model:\s+MLEModel', txt) is not None, True)
# Smoke test that summary still works when diagnostic tests fail
with warnings.catch_warnings():
warnings.simplefilter("ignore")
res.filter_results._standardized_forecasts_error[:] = np.nan
res.summary()
res.filter_results._standardized_forecasts_error = 1
res.summary()
res.filter_results._standardized_forecasts_error = 'a'
res.summary()
示例2: setup_class
def setup_class(cls, which='mixed', *args, **kwargs):
# Data
dta = datasets.macrodata.load_pandas().data
dta.index = pd.date_range(start='1959-01-01', end='2009-7-01', freq='QS')
obs = np.log(dta[['realgdp','realcons','realinv']]).diff().iloc[1:] * 400
if which == 'all':
obs.iloc[:50, :] = np.nan
obs.iloc[119:130, :] = np.nan
elif which == 'partial':
obs.iloc[0:50, 0] = np.nan
obs.iloc[119:130, 0] = np.nan
elif which == 'mixed':
obs.iloc[0:50, 0] = np.nan
obs.iloc[19:70, 1] = np.nan
obs.iloc[39:90, 2] = np.nan
obs.iloc[119:130, 0] = np.nan
obs.iloc[119:130, 2] = np.nan
mod = cls.create_model(obs, **kwargs)
cls.model = mod.ssm
n_disturbance_variates = (
(cls.model.k_endog + cls.model.k_posdef) * cls.model.nobs
)
np.random.seed(1234)
dv = np.random.normal(size=n_disturbance_variates)
isv = np.random.normal(size=cls.model.k_states)
# Collapsed filtering, smoothing, and simulation smoothing
cls.model.filter_collapsed = True
cls.results_b = cls.model.smooth()
cls.sim_b = cls.model.simulation_smoother()
cls.sim_b.simulate(disturbance_variates=dv, initial_state_variates=isv)
# Conventional filtering, smoothing, and simulation smoothing
cls.model.filter_collapsed = False
cls.results_a = cls.model.smooth()
cls.sim_a = cls.model.simulation_smoother()
cls.sim_a.simulate(disturbance_variates=dv, initial_state_variates=isv)
# Create the model with augmented state space
kwargs.pop('filter_collapsed', None)
mod = MLEModel(obs, k_states=4, k_posdef=2, **kwargs)
mod['design', :3, :2] = np.array([[-32.47143586, 17.33779024],
[-7.40264169, 1.69279859],
[-209.04702853, 125.2879374]])
mod['obs_cov'] = np.diag(
np.array([0.0622668, 1.95666886, 58.37473642]))
mod['transition', :2, :2] = np.array([[0.29935707, 0.33289005],
[-0.7639868, 1.2844237]])
mod['transition', 2:, :2] = np.eye(2)
mod['selection', :2, :2] = np.eye(2)
mod['state_cov'] = np.array([[1.2, -0.25],
[-0.25, 1.1]])
mod.initialize_approximate_diffuse(1e6)
cls.augmented_model = mod.ssm
cls.augmented_results = mod.ssm.smooth()
示例3: setup_class
def setup_class(cls, which='none', **kwargs):
# Results
path = current_path + os.sep + 'results/results_smoothing_generalobscov_R.csv'
cls.desired = pd.read_csv(path)
# Data
dta = datasets.macrodata.load_pandas().data
dta.index = pd.date_range(start='1959-01-01', end='2009-7-01', freq='QS')
obs = dta[['realgdp','realcons','realinv']].diff().iloc[1:]
if which == 'all':
obs.iloc[:50, :] = np.nan
obs.iloc[119:130, :] = np.nan
elif which == 'partial':
obs.iloc[0:50, 0] = np.nan
obs.iloc[119:130, 0] = np.nan
elif which == 'mixed':
obs.iloc[0:50, 0] = np.nan
obs.iloc[19:70, 1] = np.nan
obs.iloc[39:90, 2] = np.nan
obs.iloc[119:130, 0] = np.nan
obs.iloc[119:130, 2] = np.nan
# Create the model
mod = MLEModel(obs, k_states=3, k_posdef=3, **kwargs)
mod['design'] = np.eye(3)
mod['obs_cov'] = np.array([[ 609.0746647855, 0. , 0. ],
[ 0. , 1.8774916622, 0. ],
[ 0. , 0. , 124.6768281675]])
mod['transition'] = np.array([[-0.8110473405, 1.8005304445, 1.0215975772],
[-1.9846632699, 2.4091302213, 1.9264449765],
[ 0.9181658823, -0.2442384581, -0.6393462272]])
mod['selection'] = np.eye(3)
mod['state_cov'] = np.array([[ 1552.9758843938, 612.7185121905, 877.6157204992],
[ 612.7185121905, 467.8739411204, 70.608037339 ],
[ 877.6157204992, 70.608037339 , 900.5440385836]])
mod.initialize_approximate_diffuse(1e6)
cls.model = mod.ssm
# Conventional filtering, smoothing, and simulation smoothing
cls.model.filter_conventional = True
cls.conventional_results = cls.model.smooth()
n_disturbance_variates = (
(cls.model.k_endog + cls.model.k_posdef) * cls.model.nobs
)
cls.conventional_sim = cls.model.simulation_smoother(
disturbance_variates=np.zeros(n_disturbance_variates),
initial_state_variates=np.zeros(cls.model.k_states)
)
# Univariate filtering, smoothing, and simulation smoothing
cls.model.filter_univariate = True
cls.univariate_results = cls.model.smooth()
cls.univariate_sim = cls.model.simulation_smoother(
disturbance_variates=np.zeros(n_disturbance_variates),
initial_state_variates=np.zeros(cls.model.k_states)
)
示例4: setup_class
def setup_class(cls, which, dtype=float, alternate_timing=False, **kwargs):
# Results
path = os.path.join(current_path, 'results',
'results_smoothing_generalobscov_R.csv')
cls.desired = pd.read_csv(path)
# Data
dta = datasets.macrodata.load_pandas().data
dta.index = pd.date_range(start='1959-01-01',
end='2009-7-01', freq='QS')
obs = dta[['realgdp', 'realcons', 'realinv']].diff().iloc[1:]
if which == 'all':
obs.iloc[:50, :] = np.nan
obs.iloc[119:130, :] = np.nan
elif which == 'partial':
obs.iloc[0:50, 0] = np.nan
obs.iloc[119:130, 0] = np.nan
elif which == 'mixed':
obs.iloc[0:50, 0] = np.nan
obs.iloc[19:70, 1] = np.nan
obs.iloc[39:90, 2] = np.nan
obs.iloc[119:130, 0] = np.nan
obs.iloc[119:130, 2] = np.nan
# Create the model
mod = MLEModel(obs, k_states=3, k_posdef=3, **kwargs)
mod['design'] = np.eye(3)
X = (np.arange(9) + 1).reshape((3, 3)) / 10.
mod['obs_cov'] = np.dot(X, X.T)
mod['transition'] = np.eye(3)
mod['selection'] = np.eye(3)
mod['state_cov'] = np.eye(3)
mod.initialize_approximate_diffuse(1e6)
cls.model = mod.ssm
# Conventional filtering, smoothing, and simulation smoothing
cls.model.filter_conventional = True
cls.conventional_results = cls.model.smooth()
n_disturbance_variates = (
(cls.model.k_endog + cls.model.k_posdef) * cls.model.nobs
)
cls.conventional_sim = cls.model.simulation_smoother(
disturbance_variates=np.zeros(n_disturbance_variates),
initial_state_variates=np.zeros(cls.model.k_states)
)
# Univariate filtering, smoothing, and simulation smoothing
cls.model.filter_univariate = True
cls.univariate_results = cls.model.smooth()
cls.univariate_sim = cls.model.simulation_smoother(
disturbance_variates=np.zeros(n_disturbance_variates),
initial_state_variates=np.zeros(cls.model.k_states)
)
示例5: test_params
def test_params():
mod = MLEModel([1,2], **kwargs)
# By default start_params raises NotImplementedError
assert_raises(NotImplementedError, lambda: mod.start_params)
# But param names are by default an empty array
assert_equal(mod.param_names, [])
# We can set them in the object if we want
mod._start_params = [1]
mod._param_names = ['a']
assert_equal(mod.start_params, [1])
assert_equal(mod.param_names, ['a'])
示例6: test_summary
def test_summary():
dates = pd.date_range(start='1980-01-01', end='1984-01-01', freq='AS')
endog = pd.TimeSeries([1,2,3,4,5], index=dates)
mod = MLEModel(endog, **kwargs)
res = mod.filter([])
# Get the summary
txt = str(res.summary())
# Test res.summary when the model has dates
assert_equal(re.search('Sample:\s+01-01-1980', txt) is not None, True)
assert_equal(re.search('\s+- 01-01-1984', txt) is not None, True)
# Test res.summary when `model_name` was not provided
assert_equal(re.search('Model:\s+MLEModel', txt) is not None, True)
示例7: create_model
def create_model(cls, obs, **kwargs):
# Create the model with typical state space
mod = MLEModel(obs, k_states=2, k_posdef=2, **kwargs)
mod['design'] = np.array([[-32.47143586, 17.33779024],
[-7.40264169, 1.69279859],
[-209.04702853, 125.2879374]])
mod['obs_cov'] = np.diag(
np.array([0.0622668, 1.95666886, 58.37473642]))
mod['transition'] = np.array([[0.29935707, 0.33289005],
[-0.7639868, 1.2844237]])
mod['selection'] = np.eye(2)
mod['state_cov'] = np.array([[1.2, -0.25],
[-0.25, 1.1]])
mod.initialize_approximate_diffuse(1e6)
return mod
示例8: test_forecast
def test_forecast():
# Numpy
mod = MLEModel([1,2], **kwargs)
res = mod.filter([])
forecast = res.forecast(steps=10)
assert_allclose(forecast, np.ones((10,)) * 2)
assert_allclose(res.get_forecast(steps=10).predicted_mean, forecast)
# Pandas
index = pd.date_range('1960-01-01', periods=2, freq='MS')
mod = MLEModel(pd.Series([1,2], index=index), **kwargs)
res = mod.filter([])
assert_allclose(res.forecast(steps=10), np.ones((10,)) * 2)
assert_allclose(res.forecast(steps='1960-12-01'), np.ones((10,)) * 2)
assert_allclose(res.get_forecast(steps=10).predicted_mean, np.ones((10,)) * 2)
示例9: test_filter
def test_filter():
endog = np.array([1., 2.])
mod = MLEModel(endog, **kwargs)
# Test return of ssm object
res = mod.filter([], return_ssm=True)
assert_equal(isinstance(res, kalman_filter.FilterResults), True)
# Test return of full results object
res = mod.filter([])
assert_equal(isinstance(res, MLEResultsWrapper), True)
assert_equal(res.cov_type, 'opg')
# Test return of full results object, specific covariance type
res = mod.filter([], cov_type='oim')
assert_equal(isinstance(res, MLEResultsWrapper), True)
assert_equal(res.cov_type, 'oim')
示例10: test_diagnostics_nile_eviews
def test_diagnostics_nile_eviews():
# Test the diagnostic tests using the Nile dataset. Results are from
# "Fitting State Space Models with EViews" (Van den Bossche 2011,
# Journal of Statistical Software).
# For parameter values, see Figure 2
# For Ljung-Box and Jarque-Bera statistics and p-values, see Figure 5
# The Heteroskedasticity statistic is not provided in this paper.
niledata = nile.data.load_pandas().data
niledata.index = pd.date_range('1871-01-01', '1970-01-01', freq='AS')
mod = MLEModel(niledata['volume'], k_states=1,
initialization='approximate_diffuse', initial_variance=1e15,
loglikelihood_burn=1)
mod.ssm['design', 0, 0] = 1
mod.ssm['obs_cov', 0, 0] = np.exp(9.600350)
mod.ssm['transition', 0, 0] = 1
mod.ssm['selection', 0, 0] = 1
mod.ssm['state_cov', 0, 0] = np.exp(7.348705)
res = mod.filter([])
# Test Ljung-Box
# Note: only 3 digits provided in the reference paper
actual = res.test_serial_correlation(method='ljungbox', lags=10)[0, :, -1]
assert_allclose(actual, [13.117, 0.217], atol=1e-3)
# Test Jarque-Bera
actual = res.test_normality(method='jarquebera')[0, :2]
assert_allclose(actual, [0.041686, 0.979373], atol=1e-5)
示例11: test_diagnostics_nile_durbinkoopman
def test_diagnostics_nile_durbinkoopman():
# Test the diagnostic tests using the Nile dataset. Results are from
# Durbin and Koopman (2012); parameter values reported on page 37; test
# statistics on page 40
niledata = nile.data.load_pandas().data
niledata.index = pd.date_range('1871-01-01', '1970-01-01', freq='AS')
mod = MLEModel(niledata['volume'], k_states=1,
initialization='approximate_diffuse', initial_variance=1e15,
loglikelihood_burn=1)
mod.ssm['design', 0, 0] = 1
mod.ssm['obs_cov', 0, 0] = 15099.
mod.ssm['transition', 0, 0] = 1
mod.ssm['selection', 0, 0] = 1
mod.ssm['state_cov', 0, 0] = 1469.1
res = mod.filter([])
# Test Ljung-Box
# Note: only 3 digits provided in the reference paper
actual = res.test_serial_correlation(method='ljungbox', lags=9)[0, 0, -1]
assert_allclose(actual, [8.84], atol=1e-2)
# Test Jarque-Bera
# Note: The book reports 0.09 for Kurtosis, because it is reporting the
# statistic less the mean of the Kurtosis distribution (which is 3).
norm = res.test_normality(method='jarquebera')[0]
actual = [norm[0], norm[2], norm[3]]
assert_allclose(actual, [0.05, -0.03, 3.09], atol=1e-2)
# Test Heteroskedasticity
# Note: only 2 digits provided in the book
actual = res.test_heteroskedasticity(method='breakvar')[0, 0]
assert_allclose(actual, [0.61], atol=1e-2)
示例12: test_predict
def test_predict():
dates = pd.date_range(start='1980-01-01', end='1981-01-01', freq='AS')
endog = pd.TimeSeries([1,2], index=dates)
mod = MLEModel(endog, **kwargs)
res = mod.filter([])
# Test that predict with start=None, end=None does prediction with full
# dataset
assert_equal(res.predict().shape, (mod.k_endog, mod.nobs))
# Test a string value to the dynamic option
assert_allclose(res.predict(dynamic='1981-01-01'), res.predict())
# Test an invalid date string value to the dynamic option
assert_raises(ValueError, res.predict, dynamic='1982-01-01')
# Test predict with full results
assert_equal(isinstance(res.predict(full_results=True),
kalman_filter.FilterResults), True)
示例13: test_predict
def test_predict():
dates = pd.date_range(start='1980-01-01', end='1981-01-01', freq='AS')
endog = pd.TimeSeries([1,2], index=dates)
mod = MLEModel(endog, **kwargs)
res = mod.filter([])
# Test that predict with start=None, end=None does prediction with full
# dataset
predict = res.predict()
assert_equal(predict.shape, (mod.nobs,))
assert_allclose(res.get_prediction().predicted_mean, predict)
# Test a string value to the dynamic option
assert_allclose(res.predict(dynamic='1981-01-01'), res.predict())
# Test an invalid date string value to the dynamic option
assert_raises(ValueError, res.predict, dynamic='1982-01-01')
# Test for passing a string to predict when dates are not set
mod = MLEModel([1,2], **kwargs)
res = mod.filter([])
assert_raises(ValueError, res.predict, dynamic='string')
示例14: test_from_formula
def test_from_formula():
assert_raises(NotImplementedError, lambda: MLEModel.from_formula(1,2,3))
示例15: test_transform
def test_transform():
# The transforms in MLEModel are noops
mod = MLEModel([1,2], **kwargs)
# Test direct transform, untransform
assert_allclose(mod.transform_params([2, 3]), [2, 3])
assert_allclose(mod.untransform_params([2, 3]), [2, 3])
# Smoke test for transformation in `filter`, `update`, `loglike`,
# `loglikeobs`
mod.filter([], transformed=False)
mod.update([], transformed=False)
mod.loglike([], transformed=False)
mod.loglikeobs([], transformed=False)
# Note that mod is an SARIMAX instance, and the two parameters are
# variances
mod, _ = get_dummy_mod(fit=False)
# Test direct transform, untransform
assert_allclose(mod.transform_params([2, 3]), [4, 9])
assert_allclose(mod.untransform_params([4, 9]), [2, 3])
# Test transformation in `filter`
res = mod.filter([2, 3], transformed=True)
assert_allclose(res.params, [2, 3])
res = mod.filter([2, 3], transformed=False)
assert_allclose(res.params, [4, 9])