本文整理汇总了Python中statsmodels.tools.testing.assert_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_equal函数的具体用法?Python assert_equal怎么用?Python assert_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_equal函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_pandas_nodates_index
def test_pandas_nodates_index():
data = [988, 819, 964]
dates = ['a', 'b', 'c']
s = pd.Series(data, index=dates)
# TODO: Remove this, this is now valid
# npt.assert_raises(ValueError, TimeSeriesModel, s)
# Test with a non-date index that doesn't raise an exception because it
# can be coerced into a nanosecond DatetimeIndex
# (This test doesn't make sense for Numpy < 1.7 since they don't have
# nanosecond support)
# (This test also doesn't make sense for Pandas < 0.14 since we don't
# support nanosecond index in Pandas < 0.14)
try:
# Check for Numpy < 1.7
pd.to_offset('N')
except:
pass
else:
data = [988, 819, 964]
# index=pd.date_range('1970-01-01', periods=3, freq='QS')
index = pd.to_datetime([100, 101, 102])
s = pd.Series(data, index=index)
actual_str = (index[0].strftime('%Y-%m-%d %H:%M:%S.%f') +
str(index[0].value))
assert_equal(actual_str, '1970-01-01 00:00:00.000000100')
mod = TimeSeriesModel(s)
start, end, out_of_sample, _ = mod._get_prediction_index(0, 4)
assert_equal(len(mod.data.predict_dates), 5)
示例2: test_patsy_lazy_dict
def test_patsy_lazy_dict():
class LazyDict(dict):
def __init__(self, data):
self.data = data
def __missing__(self, key):
return np.array(self.data[key])
data = cpunish.load_pandas().data
data = LazyDict(data)
res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()
res2 = res.predict(data)
npt.assert_allclose(res.fittedvalues, res2)
data = cpunish.load_pandas().data
data['INCOME'].loc[0] = None
data = LazyDict(data)
data.index = cpunish.load_pandas().data.index
res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()
res2 = res.predict(data)
assert_equal(res.fittedvalues, res2) # Should lose a record
assert_equal(len(res2) + 1, len(cpunish.load_pandas().data))
示例3: test_formula_labels
def test_formula_labels():
# make sure labels pass through patsy as expected
# data(Duncan) from car in R
dta = StringIO(""""type" "income" "education" "prestige"\n"accountant" "prof" 62 86 82\n"pilot" "prof" 72 76 83\n"architect" "prof" 75 92 90\n"author" "prof" 55 90 76\n"chemist" "prof" 64 86 90\n"minister" "prof" 21 84 87\n"professor" "prof" 64 93 93\n"dentist" "prof" 80 100 90\n"reporter" "wc" 67 87 52\n"engineer" "prof" 72 86 88\n"undertaker" "prof" 42 74 57\n"lawyer" "prof" 76 98 89\n"physician" "prof" 76 97 97\n"welfare.worker" "prof" 41 84 59\n"teacher" "prof" 48 91 73\n"conductor" "wc" 76 34 38\n"contractor" "prof" 53 45 76\n"factory.owner" "prof" 60 56 81\n"store.manager" "prof" 42 44 45\n"banker" "prof" 78 82 92\n"bookkeeper" "wc" 29 72 39\n"mail.carrier" "wc" 48 55 34\n"insurance.agent" "wc" 55 71 41\n"store.clerk" "wc" 29 50 16\n"carpenter" "bc" 21 23 33\n"electrician" "bc" 47 39 53\n"RR.engineer" "bc" 81 28 67\n"machinist" "bc" 36 32 57\n"auto.repairman" "bc" 22 22 26\n"plumber" "bc" 44 25 29\n"gas.stn.attendant" "bc" 15 29 10\n"coal.miner" "bc" 7 7 15\n"streetcar.motorman" "bc" 42 26 19\n"taxi.driver" "bc" 9 19 10\n"truck.driver" "bc" 21 15 13\n"machine.operator" "bc" 21 20 24\n"barber" "bc" 16 26 20\n"bartender" "bc" 16 28 7\n"shoe.shiner" "bc" 9 17 3\n"cook" "bc" 14 22 16\n"soda.clerk" "bc" 12 30 6\n"watchman" "bc" 17 25 11\n"janitor" "bc" 7 20 8\n"policeman" "bc" 34 47 41\n"waiter" "bc" 8 32 10""")
from pandas import read_table
dta = read_table(dta, sep=" ")
model = ols("prestige ~ income + education", dta).fit()
assert_equal(model.fittedvalues.index, dta.index)
示例4: test_formula_labels
def test_formula_labels():
# make sure labels pass through patsy as expected
# data(Duncan) from car in R
dta = StringIO(""""type","income","education","prestige"\n"accountant","prof",62,86,82\n"pilot","prof",72,76,83\n"architect","prof",75,92,90\n"author","prof",55,90,76\n"chemist","prof",64,86,90\n"minister","prof",21,84,87\n"professor","prof",64,93,93\n"dentist","prof",80,100,90\n"reporter","wc",67,87,52\n"engineer","prof",72,86,88\n"undertaker","prof",42,74,57\n"lawyer","prof",76,98,89\n"physician","prof",76,97,97\n"welfare.worker","prof",41,84,59\n"teacher","prof",48,91,73\n"conductor","wc",76,34,38\n"contractor","prof",53,45,76\n"factory.owner","prof",60,56,81\n"store.manager","prof",42,44,45\n"banker","prof",78,82,92\n"bookkeeper","wc",29,72,39\n"mail.carrier","wc",48,55,34\n"insurance.agent","wc",55,71,41\n"store.clerk","wc",29,50,16\n"carpenter","bc",21,23,33\n"electrician","bc",47,39,53\n"RR.engineer","bc",81,28,67\n"machinist","bc",36,32,57\n"auto.repairman","bc",22,22,26\n"plumber","bc",44,25,29\n"gas.stn.attendant","bc",15,29,10\n"coal.miner","bc",7,7,15\n"streetcar.motorman","bc",42,26,19\n"taxi.driver","bc",9,19,10\n"truck.driver","bc",21,15,13\n"machine.operator","bc",21,20,24\n"barber","bc",16,26,20\n"bartender","bc",16,28,7\n"shoe.shiner","bc",9,17,3\n"cook","bc",14,22,16\n"soda.clerk","bc",12,30,6\n"watchman","bc",17,25,11\n"janitor","bc",7,20,8\n"policeman","bc",34,47,41\n"waiter","bc",8,32,10""")
from pandas import read_csv
dta = read_csv(dta)
model = ols("prestige ~ income + education", dta).fit()
assert_equal(model.fittedvalues.index, dta.index)
示例5: test_ar_select_order_tstat
def test_ar_select_order_tstat():
rs = np.random.RandomState(123)
tau = 25
y = rs.randn(tau)
ts = Series(y, index=DatetimeIndex(start="1/1/1990", periods=tau, freq="M"))
ar = AR(ts)
res = ar.select_order(maxlag=5, ic="t-stat")
assert_equal(res, 0)
示例6: test_ar_select_order_tstat
def test_ar_select_order_tstat():
rs = np.random.RandomState(123)
tau = 25
y = rs.randn(tau)
ts = Series(y, index=date_range(start='1/1/1990', periods=tau,
freq='M'))
ar = AR(ts)
res = ar.select_order(maxlag=5, ic='t-stat')
assert_equal(res, 0)
示例7: test_ar_dates
def test_ar_dates():
# just make sure they work
data = sm.datasets.sunspots.load(as_pandas=False)
dates = date_range(start='1700', periods=len(data.endog), freq='A')
endog = Series(data.endog, index=dates)
ar_model = sm.tsa.AR(endog, freq='A').fit(maxlag=9, method='mle', disp=-1)
pred = ar_model.predict(start='2005', end='2015')
predict_dates = date_range(start='2005', end='2016', freq='A')[:11]
assert_equal(ar_model.data.predict_dates, predict_dates)
assert_equal(pred.index, predict_dates)
示例8: test_ar_dates
def test_ar_dates():
# just make sure they work
data = sm.datasets.sunspots.load()
dates = sm.tsa.datetools.dates_from_range("1700", length=len(data.endog))
endog = Series(data.endog, index=dates)
ar_model = sm.tsa.AR(endog, freq="A").fit(maxlag=9, method="mle", disp=-1)
pred = ar_model.predict(start="2005", end="2015")
predict_dates = sm.tsa.datetools.dates_from_range("2005", "2015")
predict_dates = DatetimeIndex(predict_dates, freq="infer")
assert_equal(ar_model.data.predict_dates, predict_dates)
assert_equal(pred.index, predict_dates)
示例9: test_get_predict_start_end
def test_get_predict_start_end():
index = pd.date_range(start='1970-01-01', end='1990-01-01', freq='AS')
endog = pd.Series(np.zeros(10), index[:10])
model = TimeSeriesModel(endog)
predict_starts = [1, '1971-01-01', datetime(1971, 1, 1), index[1]]
predict_ends = [20, '1990-01-01', datetime(1990, 1, 1), index[-1]]
desired = (1, 9, 11)
for start in predict_starts:
for end in predict_ends:
assert_equal(model._get_prediction_index(start, end)[:3], desired)
示例10: test_ar_dates
def test_ar_dates():
# just make sure they work
data = sm.datasets.sunspots.load()
dates = sm.tsa.datetools.dates_from_range('1700', length=len(data.endog))
endog = Series(data.endog, index=dates)
ar_model = sm.tsa.AR(endog, freq='A').fit(maxlag=9, method='mle', disp=-1)
pred = ar_model.predict(start='2005', end='2015')
predict_dates = sm.tsa.datetools.dates_from_range('2005', '2015')
from pandas import DatetimeIndex # pylint: disable-msg=E0611
predict_dates = DatetimeIndex(predict_dates, freq='infer')
assert_equal(ar_model.data.predict_dates, predict_dates)
assert_equal(pred.index, predict_dates)
示例11: test_patsy_missing_data
def test_patsy_missing_data():
# Test pandas-style first
data = cpunish.load_pandas().data
data['INCOME'].loc[0] = None
res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()
res2 = res.predict(data)
# First record will be dropped during fit, but not during predict
assert_equal(res.fittedvalues, res2[1:])
# Non-pandas version
data = cpunish.load_pandas().data
data['INCOME'].loc[0] = None
data = data.to_records(index=False)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
res2 = res.predict(data)
assert 'ValueWarning' in repr(w[-1].message)
assert 'nan values have been dropped' in repr(w[-1].message)
# Frist record will be dropped in both cases
assert_equal(res.fittedvalues, res2)
示例12: test_predict_freq
def test_predict_freq():
# test that predicted dates have same frequency
x = np.arange(1,36.)
# there's a bug in pandas up to 0.10.2 for YearBegin
#dates = date_range("1972-4-1", "2007-4-1", freq="AS-APR")
dates = date_range("1972-4-30", "2006-4-30", freq="A-APR")
series = Series(x, index=dates)
model = TimeSeriesModel(series)
#npt.assert_(model.data.freq == "AS-APR")
npt.assert_(model.data.freq == "A-APR")
start = model._get_predict_start("2006-4-30")
end = model._get_predict_end("2016-4-30")
model._make_predict_dates()
predict_dates = model.data.predict_dates
#expected_dates = date_range("2006-12-31", "2016-12-31",
# freq="AS-APR")
expected_dates = date_range("2006-4-30", "2016-4-30", freq="A-APR")
assert_equal(predict_dates, expected_dates)
示例13: test_pandas_nodates_index
def test_pandas_nodates_index():
data = [988, 819, 964]
dates = ['a', 'b', 'c']
s = pd.Series(data, index=dates)
# TODO: Remove this, this is now valid
# npt.assert_raises(ValueError, TimeSeriesModel, s)
# Test with a non-date index that doesn't raise an exception because it
# can be coerced into a nanosecond DatetimeIndex
data = [988, 819, 964]
# index=pd.date_range('1970-01-01', periods=3, freq='QS')
index = pd.to_datetime([100, 101, 102])
s = pd.Series(data, index=index)
actual_str = (index[0].strftime('%Y-%m-%d %H:%M:%S.%f') +
str(index[0].value))
assert_equal(actual_str, '1970-01-01 00:00:00.000000100')
mod = TimeSeriesModel(s)
start, end, out_of_sample, _ = mod._get_prediction_index(0, 4)
assert_equal(len(mod.data.predict_dates), 5)
示例14: test_pandas_nodates_index
def test_pandas_nodates_index():
data = [988, 819, 964]
dates = ['a', 'b', 'c']
s = pd.Series(data, index=dates)
npt.assert_raises(ValueError, TimeSeriesModel, s)
# Test with a non-date index that doesn't raise an exception because it
# can be coerced into a nanosecond DatetimeIndex
# (This test doesn't make sense for Numpy < 1.7 since they don't have
# nanosecond support)
# (This test also doesn't make sense for Pandas < 0.14 since we don't
# support nanosecond index in Pandas < 0.14)
try:
# Check for Numpy < 1.7
_freq_to_pandas['N']
except:
pass
else:
data = [988, 819, 964]
# index=pd.date_range('1970-01-01', periods=3, freq='QS')
index = pd.to_datetime([100, 101, 102])
s = pd.Series(data, index=index)
# Alternate test for Pandas < 0.14
from distutils.version import LooseVersion
from pandas import __version__ as pd_version
if LooseVersion(pd_version) < '0.14':
assert_raises(NotImplementedError, TimeSeriesModel, s)
else:
actual_str = (index[0].strftime('%Y-%m-%d %H:%M:%S.%f') +
str(index[0].value))
assert_equal(actual_str, '1970-01-01 00:00:00.000000100')
mod = TimeSeriesModel(s)
start = mod._get_predict_start(0)
end, out_of_sample = mod._get_predict_end(4)
mod._make_predict_dates()
assert_equal(len(mod.data.predict_dates), 5)