当前位置: 首页>>代码示例>>Python>>正文


Python testing.assert_equal函数代码示例

本文整理汇总了Python中statsmodels.tools.testing.assert_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_equal函数的具体用法?Python assert_equal怎么用?Python assert_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了assert_equal函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_pandas_nodates_index

def test_pandas_nodates_index():

    data = [988, 819, 964]
    dates = ['a', 'b', 'c']
    s = pd.Series(data, index=dates)

    # TODO: Remove this, this is now valid
    # npt.assert_raises(ValueError, TimeSeriesModel, s)

    # Test with a non-date index that doesn't raise an exception because it
    # can be coerced into a nanosecond DatetimeIndex
    # (This test doesn't make sense for Numpy < 1.7 since they don't have
    # nanosecond support)
    # (This test also doesn't make sense for Pandas < 0.14 since we don't
    # support nanosecond index in Pandas < 0.14)
    try:
        # Check for Numpy < 1.7
        pd.to_offset('N')
    except:
        pass
    else:
        data = [988, 819, 964]
        # index=pd.date_range('1970-01-01', periods=3, freq='QS')
        index = pd.to_datetime([100, 101, 102])
        s = pd.Series(data, index=index)

        actual_str = (index[0].strftime('%Y-%m-%d %H:%M:%S.%f') +
                      str(index[0].value))
        assert_equal(actual_str, '1970-01-01 00:00:00.000000100')
        mod = TimeSeriesModel(s)
        start, end, out_of_sample, _ = mod._get_prediction_index(0, 4)
        assert_equal(len(mod.data.predict_dates), 5)
开发者ID:cong1989,项目名称:statsmodels,代码行数:32,代码来源:test_base.py

示例2: test_patsy_lazy_dict

def test_patsy_lazy_dict():
    class LazyDict(dict):
        def __init__(self, data):
            self.data = data

        def __missing__(self, key):
            return np.array(self.data[key])

    data = cpunish.load_pandas().data
    data = LazyDict(data)
    res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()

    res2 = res.predict(data)
    npt.assert_allclose(res.fittedvalues, res2)

    data = cpunish.load_pandas().data
    data['INCOME'].loc[0] = None

    data = LazyDict(data)
    data.index = cpunish.load_pandas().data.index
    res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()

    res2 = res.predict(data)
    assert_equal(res.fittedvalues, res2)  # Should lose a record
    assert_equal(len(res2) + 1, len(cpunish.load_pandas().data))
开发者ID:bashtage,项目名称:statsmodels,代码行数:25,代码来源:test_formula.py

示例3: test_formula_labels

def test_formula_labels():
    # make sure labels pass through patsy as expected
    # data(Duncan) from car in R
    dta = StringIO(""""type" "income" "education" "prestige"\n"accountant" "prof" 62 86 82\n"pilot" "prof" 72 76 83\n"architect" "prof" 75 92 90\n"author" "prof" 55 90 76\n"chemist" "prof" 64 86 90\n"minister" "prof" 21 84 87\n"professor" "prof" 64 93 93\n"dentist" "prof" 80 100 90\n"reporter" "wc" 67 87 52\n"engineer" "prof" 72 86 88\n"undertaker" "prof" 42 74 57\n"lawyer" "prof" 76 98 89\n"physician" "prof" 76 97 97\n"welfare.worker" "prof" 41 84 59\n"teacher" "prof" 48 91 73\n"conductor" "wc" 76 34 38\n"contractor" "prof" 53 45 76\n"factory.owner" "prof" 60 56 81\n"store.manager" "prof" 42 44 45\n"banker" "prof" 78 82 92\n"bookkeeper" "wc" 29 72 39\n"mail.carrier" "wc" 48 55 34\n"insurance.agent" "wc" 55 71 41\n"store.clerk" "wc" 29 50 16\n"carpenter" "bc" 21 23 33\n"electrician" "bc" 47 39 53\n"RR.engineer" "bc" 81 28 67\n"machinist" "bc" 36 32 57\n"auto.repairman" "bc" 22 22 26\n"plumber" "bc" 44 25 29\n"gas.stn.attendant" "bc" 15 29 10\n"coal.miner" "bc" 7 7 15\n"streetcar.motorman" "bc" 42 26 19\n"taxi.driver" "bc" 9 19 10\n"truck.driver" "bc" 21 15 13\n"machine.operator" "bc" 21 20 24\n"barber" "bc" 16 26 20\n"bartender" "bc" 16 28 7\n"shoe.shiner" "bc" 9 17 3\n"cook" "bc" 14 22 16\n"soda.clerk" "bc" 12 30 6\n"watchman" "bc" 17 25 11\n"janitor" "bc" 7 20 8\n"policeman" "bc" 34 47 41\n"waiter" "bc" 8 32 10""")
    from pandas import read_table
    dta = read_table(dta, sep=" ")
    model = ols("prestige ~ income + education", dta).fit()
    assert_equal(model.fittedvalues.index, dta.index)
开发者ID:dieterv77,项目名称:statsmodels,代码行数:8,代码来源:test_formula.py

示例4: test_formula_labels

def test_formula_labels():
    # make sure labels pass through patsy as expected
    # data(Duncan) from car in R
    dta = StringIO(""""type","income","education","prestige"\n"accountant","prof",62,86,82\n"pilot","prof",72,76,83\n"architect","prof",75,92,90\n"author","prof",55,90,76\n"chemist","prof",64,86,90\n"minister","prof",21,84,87\n"professor","prof",64,93,93\n"dentist","prof",80,100,90\n"reporter","wc",67,87,52\n"engineer","prof",72,86,88\n"undertaker","prof",42,74,57\n"lawyer","prof",76,98,89\n"physician","prof",76,97,97\n"welfare.worker","prof",41,84,59\n"teacher","prof",48,91,73\n"conductor","wc",76,34,38\n"contractor","prof",53,45,76\n"factory.owner","prof",60,56,81\n"store.manager","prof",42,44,45\n"banker","prof",78,82,92\n"bookkeeper","wc",29,72,39\n"mail.carrier","wc",48,55,34\n"insurance.agent","wc",55,71,41\n"store.clerk","wc",29,50,16\n"carpenter","bc",21,23,33\n"electrician","bc",47,39,53\n"RR.engineer","bc",81,28,67\n"machinist","bc",36,32,57\n"auto.repairman","bc",22,22,26\n"plumber","bc",44,25,29\n"gas.stn.attendant","bc",15,29,10\n"coal.miner","bc",7,7,15\n"streetcar.motorman","bc",42,26,19\n"taxi.driver","bc",9,19,10\n"truck.driver","bc",21,15,13\n"machine.operator","bc",21,20,24\n"barber","bc",16,26,20\n"bartender","bc",16,28,7\n"shoe.shiner","bc",9,17,3\n"cook","bc",14,22,16\n"soda.clerk","bc",12,30,6\n"watchman","bc",17,25,11\n"janitor","bc",7,20,8\n"policeman","bc",34,47,41\n"waiter","bc",8,32,10""")
    from pandas import read_csv
    dta = read_csv(dta)
    model = ols("prestige ~ income + education", dta).fit()
    assert_equal(model.fittedvalues.index, dta.index)
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:8,代码来源:test_formula.py

示例5: test_ar_select_order_tstat

def test_ar_select_order_tstat():
    rs = np.random.RandomState(123)
    tau = 25
    y = rs.randn(tau)
    ts = Series(y, index=DatetimeIndex(start="1/1/1990", periods=tau, freq="M"))

    ar = AR(ts)
    res = ar.select_order(maxlag=5, ic="t-stat")
    assert_equal(res, 0)
开发者ID:Inoryy,项目名称:statsmodels,代码行数:9,代码来源:test_ar.py

示例6: test_ar_select_order_tstat

def test_ar_select_order_tstat():
    rs = np.random.RandomState(123)
    tau = 25
    y = rs.randn(tau)
    ts = Series(y, index=date_range(start='1/1/1990', periods=tau,
                                    freq='M'))

    ar = AR(ts)
    res = ar.select_order(maxlag=5, ic='t-stat')
    assert_equal(res, 0)
开发者ID:statsmodels,项目名称:statsmodels,代码行数:10,代码来源:test_ar.py

示例7: test_ar_dates

def test_ar_dates():
    # just make sure they work
    data = sm.datasets.sunspots.load(as_pandas=False)
    dates = date_range(start='1700', periods=len(data.endog), freq='A')
    endog = Series(data.endog, index=dates)
    ar_model = sm.tsa.AR(endog, freq='A').fit(maxlag=9, method='mle', disp=-1)
    pred = ar_model.predict(start='2005', end='2015')
    predict_dates = date_range(start='2005', end='2016', freq='A')[:11]

    assert_equal(ar_model.data.predict_dates, predict_dates)
    assert_equal(pred.index, predict_dates)
开发者ID:statsmodels,项目名称:statsmodels,代码行数:11,代码来源:test_ar.py

示例8: test_ar_dates

def test_ar_dates():
    # just make sure they work
    data = sm.datasets.sunspots.load()
    dates = sm.tsa.datetools.dates_from_range("1700", length=len(data.endog))
    endog = Series(data.endog, index=dates)
    ar_model = sm.tsa.AR(endog, freq="A").fit(maxlag=9, method="mle", disp=-1)
    pred = ar_model.predict(start="2005", end="2015")
    predict_dates = sm.tsa.datetools.dates_from_range("2005", "2015")
    predict_dates = DatetimeIndex(predict_dates, freq="infer")

    assert_equal(ar_model.data.predict_dates, predict_dates)
    assert_equal(pred.index, predict_dates)
开发者ID:Inoryy,项目名称:statsmodels,代码行数:12,代码来源:test_ar.py

示例9: test_get_predict_start_end

def test_get_predict_start_end():
    index = pd.date_range(start='1970-01-01', end='1990-01-01', freq='AS')
    endog = pd.Series(np.zeros(10), index[:10])
    model = TimeSeriesModel(endog)

    predict_starts = [1, '1971-01-01', datetime(1971, 1, 1), index[1]]
    predict_ends = [20, '1990-01-01', datetime(1990, 1, 1), index[-1]]

    desired = (1, 9, 11)
    for start in predict_starts:
        for end in predict_ends:
            assert_equal(model._get_prediction_index(start, end)[:3], desired)
开发者ID:bashtage,项目名称:statsmodels,代码行数:12,代码来源:test_base.py

示例10: test_ar_dates

def test_ar_dates():
    # just make sure they work
    data = sm.datasets.sunspots.load()
    dates = sm.tsa.datetools.dates_from_range('1700', length=len(data.endog))
    endog = Series(data.endog, index=dates)
    ar_model = sm.tsa.AR(endog, freq='A').fit(maxlag=9, method='mle', disp=-1)
    pred = ar_model.predict(start='2005', end='2015')
    predict_dates = sm.tsa.datetools.dates_from_range('2005', '2015')
    from pandas import DatetimeIndex  # pylint: disable-msg=E0611
    predict_dates = DatetimeIndex(predict_dates, freq='infer')

    assert_equal(ar_model.data.predict_dates, predict_dates)
    assert_equal(pred.index, predict_dates)
开发者ID:DevSinghSachan,项目名称:statsmodels,代码行数:13,代码来源:test_ar.py

示例11: test_patsy_missing_data

def test_patsy_missing_data():
    # Test pandas-style first
    data = cpunish.load_pandas().data
    data['INCOME'].loc[0] = None
    res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()
    res2 = res.predict(data)
    # First record will be dropped during fit, but not during predict
    assert_equal(res.fittedvalues, res2[1:])

    # Non-pandas version
    data = cpunish.load_pandas().data
    data['INCOME'].loc[0] = None
    data = data.to_records(index=False)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        res2 = res.predict(data)
        assert 'ValueWarning' in repr(w[-1].message)
        assert 'nan values have been dropped' in repr(w[-1].message)
    # Frist record will be dropped in both cases
    assert_equal(res.fittedvalues, res2)
开发者ID:bashtage,项目名称:statsmodels,代码行数:20,代码来源:test_formula.py

示例12: test_predict_freq

def test_predict_freq():
    # test that predicted dates have same frequency
    x = np.arange(1,36.)

    # there's a bug in pandas up to 0.10.2 for YearBegin
    #dates = date_range("1972-4-1", "2007-4-1", freq="AS-APR")
    dates = date_range("1972-4-30", "2006-4-30", freq="A-APR")
    series = Series(x, index=dates)
    model = TimeSeriesModel(series)
    #npt.assert_(model.data.freq == "AS-APR")
    npt.assert_(model.data.freq == "A-APR")

    start = model._get_predict_start("2006-4-30")
    end = model._get_predict_end("2016-4-30")
    model._make_predict_dates()

    predict_dates = model.data.predict_dates

    #expected_dates = date_range("2006-12-31", "2016-12-31",
    #                            freq="AS-APR")
    expected_dates = date_range("2006-4-30", "2016-4-30", freq="A-APR")
    assert_equal(predict_dates, expected_dates)
开发者ID:Bhushan1002,项目名称:statsmodels,代码行数:22,代码来源:test_base.py

示例13: test_pandas_nodates_index

def test_pandas_nodates_index():

    data = [988, 819, 964]
    dates = ['a', 'b', 'c']
    s = pd.Series(data, index=dates)

    # TODO: Remove this, this is now valid
    # npt.assert_raises(ValueError, TimeSeriesModel, s)

    # Test with a non-date index that doesn't raise an exception because it
    # can be coerced into a nanosecond DatetimeIndex
    data = [988, 819, 964]
    # index=pd.date_range('1970-01-01', periods=3, freq='QS')
    index = pd.to_datetime([100, 101, 102])
    s = pd.Series(data, index=index)

    actual_str = (index[0].strftime('%Y-%m-%d %H:%M:%S.%f') +
                  str(index[0].value))
    assert_equal(actual_str, '1970-01-01 00:00:00.000000100')
    mod = TimeSeriesModel(s)
    start, end, out_of_sample, _ = mod._get_prediction_index(0, 4)
    assert_equal(len(mod.data.predict_dates), 5)
开发者ID:bashtage,项目名称:statsmodels,代码行数:22,代码来源:test_base.py

示例14: test_pandas_nodates_index

def test_pandas_nodates_index():

    data = [988, 819, 964]
    dates = ['a', 'b', 'c']
    s = pd.Series(data, index=dates)

    npt.assert_raises(ValueError, TimeSeriesModel, s)

    # Test with a non-date index that doesn't raise an exception because it
    # can be coerced into a nanosecond DatetimeIndex
    # (This test doesn't make sense for Numpy < 1.7 since they don't have
    # nanosecond support)
    # (This test also doesn't make sense for Pandas < 0.14 since we don't
    # support nanosecond index in Pandas < 0.14)
    try:
        # Check for Numpy < 1.7
        _freq_to_pandas['N']
    except:
        pass
    else:
        data = [988, 819, 964]
        # index=pd.date_range('1970-01-01', periods=3, freq='QS')
        index = pd.to_datetime([100, 101, 102])
        s = pd.Series(data, index=index)

        # Alternate test for Pandas < 0.14
        from distutils.version import LooseVersion
        from pandas import __version__ as pd_version
        if LooseVersion(pd_version) < '0.14':
            assert_raises(NotImplementedError, TimeSeriesModel, s)
        else:
            actual_str = (index[0].strftime('%Y-%m-%d %H:%M:%S.%f') +
                          str(index[0].value))
            assert_equal(actual_str, '1970-01-01 00:00:00.000000100')
            mod = TimeSeriesModel(s)
            start = mod._get_predict_start(0)
            end, out_of_sample = mod._get_predict_end(4)
            mod._make_predict_dates()
            assert_equal(len(mod.data.predict_dates), 5)
开发者ID:jcrotinger,项目名称:statsmodels,代码行数:39,代码来源:test_base.py


注:本文中的statsmodels.tools.testing.assert_equal函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。