当前位置: 首页>>代码示例>>Python>>正文


Python kde.KDEUnivariate类代码示例

本文整理汇总了Python中statsmodels.nonparametric.kde.KDEUnivariate的典型用法代码示例。如果您正苦于以下问题:Python KDEUnivariate类的具体用法?Python KDEUnivariate怎么用?Python KDEUnivariate使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了KDEUnivariate类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pdf

    def pdf(self, token, years, bw=5, *args, **kwargs):

        """
        Estimate a density function from a token's ratio series.

        Args:
            token (str)
            years (iter)
            bw (int)

        Returns: OrderedDict {year: density}
        """

        series = self.clean_series(token, *args, **kwargs)

        # Use the ratio values as weights.
        weights = np.array(list(series.values()))

        # Fit the density estimate.
        density = KDEUnivariate(list(series.keys()))
        density.fit(fft=False, weights=weights, bw=bw)

        samples = OrderedDict()

        for year in years:
            samples[year] = density.evaluate(year)[0]

        return samples
开发者ID:davidmcclure,项目名称:history-of-literature,代码行数:28,代码来源:wpm_ratios.py

示例2: find_outiers_kde

def find_outiers_kde(x):
    x_scaled = scale(list(map(float,x)))
    kde = KDEUnivariate(x_scaled)
    kde.fit(bw="scott",fft=True)
    pred = kde.evaluate(x_scaled)
    
    n = sum(pred < 0.5)
    outlierindices=np.asarray(pred).argsort()[:n]
    outliervalue=np.asarray(x)[outlierindices]
    return outlierindices,outliervalue
开发者ID:banunitte,项目名称:WaterWave,代码行数:10,代码来源:Datapreprocessing.py

示例3: empiricalPDF

def empiricalPDF(data):
    """
    Evaluate a probability density function using kernel density
    estimation for input data.

    :param data: :class:`numpy.ndarray` of data values.

    :returns: PDF values at the data points.
    """
    LOG.debug("Calculating empirical PDF")
    sortedmax = np.sort(data)
    kde = KDEUnivariate(sortedmax)
    kde.fit()
    try:
        res = kde.evaluate(sortedmax)
    except MemoryError:
        res = np.zeros(len(sortedmax))
    return res
开发者ID:wcarthur,项目名称:extremes,代码行数:18,代码来源:distributions.py

示例4: kde_statsmodels_u

def kde_statsmodels_u(data, grid, **kwargs):
    """
    Univariate Kernel Density Estimation with Statsmodels

    Parameters
    ----------
    data : numpy.array
        Data points used to compute a density estimator. It
        has `n x 1` dimensions, representing n points and p
        variables.
    grid : numpy.array
        Data points at which the desity will be estimated. It
        has `m x 1` dimensions, representing m points and p
        variables.

    Returns
    -------
    out : numpy.array
        Density estimate. Has `m x 1` dimensions
    """
    kde = KDEUnivariate(data)
    kde.fit(**kwargs)
    return kde.evaluate(grid)
开发者ID:jwhendy,项目名称:plotnine,代码行数:23,代码来源:density.py

示例5: lfdr

def lfdr(p_values, pi0, trunc = True, monotone = True, transf = "probit", adj = 1.5, eps = np.power(10.0,-8)):
    """ Estimate local FDR / posterior error probability from p-values according to bioconductor/qvalue """
    p = np.array(p_values)

    # Compare to bioconductor/qvalue reference implementation
    # import rpy2
    # import rpy2.robjects as robjects
    # from rpy2.robjects import pandas2ri
    # pandas2ri.activate()

    # density=robjects.r('density')
    # smoothspline=robjects.r('smooth.spline')
    # predict=robjects.r('predict')

    # Check inputs
    lfdr_out = p
    rm_na = np.isfinite(p)
    p = p[rm_na]

    if (min(p) < 0 or max(p) > 1):
        raise click.ClickException("p-values not in valid range [0,1].")
    elif (pi0 < 0 or pi0 > 1):
        raise click.ClickException("pi0 not in valid range [0,1].")

    # Local FDR method for both probit and logit transformations
    if (transf == "probit"):
        p = np.maximum(p, eps)
        p = np.minimum(p, 1-eps)
        x = scipy.stats.norm.ppf(p, loc=0, scale=1)

        # R-like implementation
        bw = bw_nrd0(x)
        myd = KDEUnivariate(x)
        myd.fit(bw=adj*bw, gridsize = 512)
        splinefit = sp.interpolate.splrep(myd.support, myd.density)
        y = sp.interpolate.splev(x, splinefit)
        # myd = density(x, adjust = 1.5) # R reference function
        # mys = smoothspline(x = myd.rx2('x'), y = myd.rx2('y')) # R reference function
        # y = predict(mys, x).rx2('y') # R reference function

        lfdr = pi0 * scipy.stats.norm.pdf(x) / y
    elif (transf == "logit"):
        x = np.log((p + eps) / (1 - p + eps))

        # R-like implementation
        bw = bw_nrd0(x)
        myd = KDEUnivariate(x)
        myd.fit(bw=adj*bw, gridsize = 512)

        splinefit = sp.interpolate.splrep(myd.support, myd.density)
        y = sp.interpolate.splev(x, splinefit)
        # myd = density(x, adjust = 1.5) # R reference function
        # mys = smoothspline(x = myd.rx2('x'), y = myd.rx2('y')) # R reference function
        # y = predict(mys, x).rx2('y') # R reference function

        dx = np.exp(x) / np.power((1 + np.exp(x)),2)
        lfdr = (pi0 * dx) / y
    else:
        raise click.ClickException("Invalid local FDR method.")

    if (trunc):
        lfdr[lfdr > 1] = 1
    if (monotone):
        lfdr = lfdr[p.ravel().argsort()]
        for i in range(1,len(x)):
            if (lfdr[i] < lfdr[i - 1]):
                lfdr[i] = lfdr[i - 1]
        lfdr = lfdr[scipy.stats.rankdata(p,"min")-1]

    lfdr_out[rm_na] = lfdr
    return lfdr_out
开发者ID:PyProphet,项目名称:pyprophet,代码行数:71,代码来源:stats.py

示例6: draw_logit_regression

def draw_logit_regression(df, kind):
    w = open("logit_result.txt", "w")
    formula = 'Survived ~ C(Pclass) + C(Sex) + Age + SibSp  + C(Embarked)' # here the ~ sign is an = sign, and the features of our dataset
    results = {} # create a results dictionary to hold our regression results for easy analysis later
    y, x = dmatrices(formula, data=df, return_type='dataframe')
    model = sm.Logit(y, x)
    res = model.fit()
    results['Logit'] = [res, formula]
    print >> w, res.summary()

    if kind is 1:
        return results

    # Plot Predictions Vs Actual
    plt.figure(figsize=(18,4));
    plt.subplot(121, axisbg="#DBDBDB")
    # generate predictions from our fitted model
    ypred = res.predict(x)
    plt.plot(x.index, ypred, 'bo', x.index, y, 'mo', alpha=.25);
    plt.grid(color='white', linestyle='dashed')
    plt.title('Logit predictions, Blue: \nFitted/predicted values: Red');
    plt.savefig("1.eps")

    # Residuals
    plt.subplot(122, axisbg="#DBDBDB")
    plt.plot(res.resid, 'r-')
    plt.grid(color='white', linestyle='dashed')
    plt.title('Logit Residuals');
    plt.savefig("2.eps")



    fig = plt.figure(figsize=(18,9), dpi=1600)
    a = .2

    # Below are examples of more advanced plotting. 
    # It it looks strange check out the tutorial above.
    fig.add_subplot(221, axisbg="#DBDBDB")
    kde_res = KDEUnivariate(res.predict())
    kde_res.fit()
    plt.plot(kde_res.support,kde_res.density)
    plt.fill_between(kde_res.support,kde_res.density, alpha=a)
    title("Distribution of our Predictions")

    fig.add_subplot(222, axisbg="#DBDBDB")
    plt.scatter(res.predict(),x['C(Sex)[T.male]'] , alpha=a)
    plt.grid(b=True, which='major', axis='x')
    plt.xlabel("Predicted chance of survival")
    plt.ylabel("Gender Bool")
    title("The Change of Survival Probability by Gender (1 = Male)")

    fig.add_subplot(223, axisbg="#DBDBDB")
    plt.scatter(res.predict(),x['C(Pclass)[T.3]'] , alpha=a)
    plt.xlabel("Predicted chance of survival")
    plt.ylabel("Class Bool")
    plt.grid(b=True, which='major', axis='x')
    title("The Change of Survival Probability by Lower Class (1 = 3rd Class)")

    fig.add_subplot(224, axisbg="#DBDBDB")
    plt.scatter(res.predict(),x.Age , alpha=a)
    plt.grid(True, linewidth=0.15)
    title("The Change of Survival Probability by Age")
    plt.xlabel("Predicted chance of survival")
    plt.ylabel("Age")
    plt.savefig("prediction.eps")
开发者ID:zhaoyangliu,项目名称:titanic,代码行数:65,代码来源:ipython_workflow.py

示例7: kde_statsmodels_u

def kde_statsmodels_u(x, x_grid, bandwidth=0.2, **kwargs):
    """Univariate Kernel Density Estimation with Statsmodels"""
    kde = KDEUnivariate(x)
    kde.fit(bw=bandwidth, **kwargs)
    return kde.evaluate(x_grid)
开发者ID:eddienko,项目名称:EuclidVisibleInstrument,代码行数:5,代码来源:analyseBackground.py

示例8: KDEUnivariate

plt.title('Logit Residuals');


# Hey I've got an idea, let's just make more plots...

fig = plt.figure(figsize=(18,9), dpi=1600)
a = .2

fig.add_subplot(221, axisbg="#DBDBDB")

"""
this is the "kernel density estimator", just like was used above,
to create a nice smoothed density plot of the predictions
the y-values look incorrect, but I'm guessing the shape is right
"""
kde_res = KDEUnivariate(res.predict())
kde_res.fit()

# I think the "support" is simply the domain in which the
# density is greater than 0.
plt.plot(kde_res.support,kde_res.density)
plt.fill_between(kde_res.support,kde_res.density, alpha=a)
plt.title("Distribution of our Predictions")

# show that predicted survival probabilities are much lower
# for males than females
fig.add_subplot(222, axisbg="#DBDBDB")
plt.scatter(res.predict(),x['C(Sex)[T.male]'] , alpha=a)
plt.grid(b=True, which='major', axis='x')
plt.xlabel("Predicted chance of survival")
plt.ylabel("Gender Bool")
开发者ID:aliasch,项目名称:programming,代码行数:31,代码来源:initial_trials.py

示例9: bootstrap_fit

ln_par, ln_lo, ln_up = bootstrap_fit(
    stats.lognorm, resid, n_iter=n_bs, quant=q
)
hc_par, hc_lo, hc_up = bootstrap_fit(
    stats.halfcauchy, resid, n_iter=n_bs, quant=q
)
gam_par, gam_lo, gam_up = bootstrap_fit(
    stats.gamma, resid, n_iter=n_bs, quant=q
)

##################################################################

hc = stats.halfcauchy(*stats.halfcauchy.fit(resid))
lg = stats.lognorm(*stats.lognorm.fit(resid))
dens = KDEUnivariate(resid)
dens.fit()
ecdf = ECDF(resid)

##################################################################
# prepare X axes for plotting

ex = ecdf.x
x = np.linspace(min(resid), max(resid), 2000)

##################################################################
# Fit a Landau distribution with ROOT

if HAS_ROOT:
    root_hist = rootpy.plotting.Hist(100, 0, np.pi)
    root_hist.fill_array(resid)
开发者ID:tamasgal,项目名称:km3pipe,代码行数:30,代码来源:guess_the_dist.py

示例10: kde_statsmodels_u

 def kde_statsmodels_u(self, x_grid, bandwidth=0.2, **kwargs):
     """Univariate Kernel Density Estimation with Statsmodels"""
     from statsmodels.nonparametric.kde import KDEUnivariate
     kde = KDEUnivariate(self.data)
     kde.fit(bw=bandwidth, **kwargs)
     return kde.evaluate(x_grid)
开发者ID:WMGoBuffs,项目名称:biokit,代码行数:6,代码来源:kde.py

示例11: setup_class

 def setup_class(cls):
     cls.decimal_density = 2 # low accuracy because binning is different
     res1 = KDE(Xi)
     res1.fit(kernel="gau", fft=True, bw="silverman")
     cls.res1 = res1
     rfname2 = os.path.join(curdir,'results','results_kde_fft.csv')
     cls.res_density = np.genfromtxt(open(rfname2, 'rb'))
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:7,代码来源:test_kde.py

示例12: setupClass

 def setupClass(cls):
     cls.x = x = KDEWResults['x']
     weights = KDEWResults['weights']
     res1 = KDE(x)
     res1.fit(kernel=cls.kernel_name, weights=weights, fft=False)
     cls.res1 = res1
     cls.res_density = KDEWResults[cls.res_kernel_name]
开发者ID:peaton,项目名称:statsmodels,代码行数:7,代码来源:test_kde.py


注:本文中的statsmodels.nonparametric.kde.KDEUnivariate类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。